满分5 > 高中数学试题 >

如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,...

如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积.
(Ⅱ)若N是BC的中点,求证:AN∥平面CME;
(Ⅲ)求证:平面BDE⊥平面BCD.

manfen5.com 满分网
(I)由图可以看出,几何体可以看作是以点B为顶点的四棱锥,其与底面积易求; (II)证明线AN与面CME中一线平行即可利用线面平行的判定定理得出线面平行,由图形易得,可构造平行四边形证明线线平行,连接MN,则MN∥CD,AE∥CD,即可证得; (Ⅲ)要平面BDE⊥平面BCD,关键是在一平面中寻找另一平面的垂线,易得AN⊥平面BCD,利用AN∥EM,可得EM⊥平面BCD ,从而得证 【解析】 (Ⅰ)由题意,EA⊥平面ABC,DC⊥平面ABC,AE∥DC,AE=2,DC=4,AB⊥AC,且AB=AC=2 ∵EA⊥平面ABC, ∴EA⊥AB,又AB⊥AC,∴AB⊥平面ACDE ∴四棱锥B-ACDE的高h=AB=2,梯形ACDE的面积S=6 ∴, 即所求几何体的体积为4(4分) (Ⅱ)连接MN,则MN∥CD,AE∥CD 又,所以四边形ANME为平行四边形,∴AN∥EM …(6分) ∵AN⊄平面CME,EM⊂平面CME,所以,AN∥平面CME;    …(8分) (Ⅲ)∵AC=AB,N是BC的中点,AN⊥BC,平面ABC⊥平面BCD ∴AN⊥平面BCD  …(10分) 由(Ⅱ)知:AN∥EM ∴EM⊥平面BCD 又EM⊂平面BDE 所以,平面BDE⊥平面BCD.…(12分)
复制答案
考点分析:
相关试题推荐
一个几何体的三视图如图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.
(Ⅰ)请画出该几何体的直观图,并求出它的体积;
(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD-A1B1C1D1?试画出图形;
(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD-A1B1C1D1的棱CC1的中点为E,求平面AB1E与平面ABCD所成二面角的余弦值.

manfen5.com 满分网 查看答案
如图(1)为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)如图(2)所示的方框内已给出了该几何体的俯视图,请在方框内画出该几何体的正(主)视图和侧(左)视图;并求四棱锥B-CEPD的体积;
(2)求证:BE∥平面PDA.
(3)求二面角P-AB-C的余弦值.

manfen5.com 满分网 查看答案
如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连接BC′,证明:BC′∥面EFG.
manfen5.com 满分网
查看答案
manfen5.com 满分网某高速公路收费站入口处的安全标识墩如图(1)所示.墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图(2)、图(3)分别是该标识墩的正(主)视图和俯视图.
(1)请画出该安全标识墩的侧(左)视图;
(2)求该安全标识墩的体积;
(3)证明:直线BD⊥平面PEG.
查看答案
一个多面体的直观图,正(主)视图,侧(左)视图如下所示,其中正(主)视图、侧(左)视图为边长为a的正方形.
(1)请在指定的框内画出多面体的俯视图;
(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;
(3)求该多面体的表面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.