满分5 > 高中数学试题 >

已知正方体ABCD-A′B′C′D′的棱长为1,点M是棱AA′的中点,点O是对角...

已知正方体ABCD-A′B′C′D′的棱长为1,点M是棱AA′的中点,点O是对角线BD′的中点.
(Ⅰ)求证:OM为异面直线AA′和BD′的公垂线;
(Ⅱ)求二面角M-BC′-B′的大小;
(Ⅲ)求三棱锥M-OBC的体积.

manfen5.com 满分网
(Ⅰ)连接AC,取AC中点K,则K为BD的中点,连接OK,证明MO⊥AA′,MO⊥BD′ OM是异面直线AA′和BD′都相交,即可证明OM为异面直线AA′和BD′的公垂线; (Ⅱ)取BB′中点N,连接MN,则MN⊥平面BCC′B′,过点N作NH⊥BC′于H,连接MH,说明∠MHN为二面角M-BC′-B′的平面角,解三角形求二面角M-BC′-B′的大小; (Ⅲ)利用VM-OBC=VM-OA’D’=VO-MA’D’,求出S△MA’D’以及O到平面MA′D′距离h,即可求三棱锥M-OBC的体积. 【解析】 (Ⅰ)连接AC,取AC中点K,则K为BD的中点,连接OK 因为M是棱AA′的中点,点O是BD′的中点 所以AM 所以MO 由AA′⊥AK,得MO⊥AA′ 因为AK⊥BD,AK⊥BB′,所以AK⊥平面BDD′B′ 所以AK⊥BD′ 所以MO⊥BD′ 又因为OM是异面直线AA′和BD′都相交 故OM为异面直线AA′和BD′的公垂线 (Ⅱ)取BB′中点N,连接MN,则MN⊥平面BCC′B′ 过点N作NH⊥BC′于H,连接MH 则由三垂线定理得BC’⊥MH 从而,∠MHN为二面角M-BC′-B′的平面角 MN=1,NH=BNsin45°= 在Rt△MNH中,tan∠MHN= 故二面角M-BC′-B′的大小为arctan2 (Ⅲ)易知,S△OBC=S△OA’D’,且△OBC和△OA′D′都在平面BCD′A′内 点O到平面MA′D′距离h= VM-OBC=VM-OA’D’=VO-MA’D’=S△MA’D’h=
复制答案
考点分析:
相关试题推荐
本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元每小时(不足1小时的部分按1小时计算).有人独立来该租车点租车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为manfen5.com 满分网manfen5.com 满分网;两小时以上且不超过三小时还车的概率分别为manfen5.com 满分网;两人租车时间都不会超过四小时.
(Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率;
(Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率.
查看答案
已知圆x2+y2+8x-4y=0与以原点为圆心的某圆关于直线y=kx+b对称,
(1)求k、b的值;
(2)若这时两圆的交点为A、B,求∠AOB的度数.
查看答案
用0,1,2,3,4,5六个数字组成无重复数字的五位数,分别求出下列各类数的个数(1)奇数;(2)比20300大的数.
查看答案
下面有五个命题:
①函数y=sin4x-cos4x的最小正周期是π.
②终边在y轴上的角的集合是{a|a=manfen5.com 满分网|.
③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点.
④把函数manfen5.com 满分网的图象向右平移manfen5.com 满分网得到y=3sin2x的图象
⑤函数manfen5.com 满分网在(0,π)上是减函数
其中真命题的序号是    ((写出所有真命题的编号)) 查看答案
manfen5.com 满分网如图,二面角α-l-β的大小是60°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.