满分5 > 高中数学试题 >

如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB...

如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=manfen5.com 满分网.AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.
(1)证明:
(i)EF∥A1D1
(ii)BA1⊥平面B1C1EF;
(2)求BC1与平面B1C1EF所成的角的正弦值.

manfen5.com 满分网
(1) (i)先由C1B1∥A1D1证明C1B1∥平面ADD1A1,再由线面平行的性质定理得出C1B1∥EF,证出EF∥A1D1. (ii)易通过证明B1C1⊥平面ABB1A1得出B1C1⊥BA1,再由tan∠A1B1F=tan∠AA1B=,即∠A1B1F=∠AA1B,得出BA1⊥B1F.所以BA1⊥平面B1C1EF; (2)设BA1与B1F交点为H,连接C1H,由(1)知BA1⊥平面B1C1EF,所以∠BC1H是BC1与平面B1C1EF所成的角.在RT△BHC1中求解即可. (1)证明(i)∵C1B1∥A1D1,C1B1⊄平面ADD1A1,∴C1B1∥平面ADD1A1, 又C1B1⊂平面B1C1EF,平面B1C1EF∩平面ADD1A1=EF, ∴C1B1∥EF,∴EF∥A1D1; (ii)∵BB1⊥平面A1B1C1D1,∴BB1⊥B1C1, 又∵B1C1⊥B1A1, ∴B1C1⊥平面ABB1A1, ∴B1C1⊥BA1, 在矩形ABB1A1中,F是AA1的中点,tan∠A1B1F=tan∠AA1B=,即∠A1B1F=∠AA1B,故BA1⊥B1F. 所以BA1⊥平面B1C1EF; (2)【解析】 设BA1与B1F交点为H, 连接C1H,由(1)知BA1⊥平面B1C1EF,所以∠BC1H是BC1与平面B1C1EF所成的角. 在矩形AA1B1B中,AB=,AA1=2,得BH=, 在RT△BHC1中,BC1=2,sin∠BC1H==, 所以BC1与平面B1C1EF所成的角的正弦值是.
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*
(1)求an,bn
(2)求数列{an•bn}的前n项和Tn
查看答案
在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=manfen5.com 满分网acosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,求a,c的值.
查看答案
定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=    查看答案
设函数f(x)是定义在R上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则manfen5.com 满分网=    查看答案
在△ABC中,M是BC的中点,AM=3,BC=10,则manfen5.com 满分网manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.