满分5 > 高中数学试题 >

如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段...

如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.

manfen5.com 满分网
(1)D,E分别为AC,AB的中点,易证DE∥平面A1CB; (2)由题意可证DE⊥平面A1DC,从而有DE⊥A1F,又A1F⊥CD,可证A1F⊥平面BCDE,问题解决; (3)取A1C,A1B的中点P,Q,则PQ∥BC,平面DEQ即为平面DEP,由DE⊥平面,P是等腰三角形DA1C底边A1C的中点,可证A1C⊥平面DEP,从而A1C⊥平面DEQ. 【解析】 (1)∵D,E分别为AC,AB的中点, ∴DE∥BC,又DE⊄平面A1CB, ∴DE∥平面A1CB, (2)由已知得AC⊥BC且DE∥BC, ∴DE⊥AC, ∴DE⊥A1D,又DE⊥CD, ∴DE⊥平面A1DC,而A1F⊂平面A1DC, ∴DE⊥A1F,又A1F⊥CD, ∴A1F⊥平面BCDE, ∴A1F⊥BE. (3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC. ∵DE∥BC, ∴DE∥PQ. ∴平面DEQ即为平面DEP.由(Ⅱ)知DE⊥平面A1DC, ∴DE⊥A1C, 又∵P是等腰三角形DA1C底边A1C的中点, ∴A1C⊥DP, ∴A1C⊥平面DEP,从而A1C⊥平面DEQ, 故线段A1B上存在点Q,使A1C⊥平面DEQ
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网
(1)求f(x)的定义域及最小正周期;
(2)求f(x)的单调递减区间.
查看答案
已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若∀x∈R,f(x)<0或g(x)<0,则m的取值范围是    查看答案
己知正方形ABCD的边长为1,点E是AB边上的动点.则manfen5.com 满分网的值为    查看答案
已知函数f(x)=lgx,若f(ab)=1,则f(a2)+f(b2)=    查看答案
在△ABC中,若a=3,b=manfen5.com 满分网manfen5.com 满分网,则∠C的大小为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.