满分5 > 高中数学试题 >

正项的等差数列{an}中,2a3-a72+2a11=0,数列{bn}是等比数列,...

正项的等差数列{an}中,2a3-a72+2a11=0,数列{bn}是等比数列,且b7=a7,则b6b8=   
根据等差数列的性质化简已知条件,得到关于a7的方程,求出方程的解得到a7的值,进而得到b7的值,把所求的式子利用等比数列的性质化简,将b7的值代入即可求出值. 【解析】 根据等差数列的性质得:a3+a11=2a7, 2a3-a72+2a11=0变为:4a7-a72=0,解得a7=4,a7=0(舍去), 所以b7=a7=4, 则b6b8=a72=16. 故答案为:16
复制答案
考点分析:
相关试题推荐
计算:manfen5.com 满分网=    查看答案
设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9=    查看答案
若复数z满足(1+i)z=1-3i,则复数z在复平面上的对应点在    象限. 查看答案
已知函数manfen5.com 满分网(a>0),且f′(1)=0.
(Ⅰ)试用含有a的式子表示b,并求f(x)的极值;
(Ⅱ)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2),如果在函数图象上存在点M(x,y)(其中x∈(x1,x2)),使得点M处的切线l∥AB,则称AB存在“伴随切线”.特别地,当manfen5.com 满分网时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图象上是否存在两点A、B使得它存在“中值伴随切线”,若存在,求出A、B的坐标,若不存在,说明理由.
查看答案
某鱼塘2009年初有鱼10(万条),每年年终将捕捞当年鱼总量的50%,在第二年年初又将有一部分新鱼放入鱼塘.根据养鱼的科学技术知识,该鱼塘中鱼的总量不能超过19.5(万条)(不考虑鱼的自然繁殖和死亡等因素对鱼总量的影响),所以该鱼塘采取对放入鱼塘的新鱼数进行控制,该鱼塘每年只放入新鱼b(万条).
(I)设第n年年初该鱼塘的鱼总量为an(年初已放入新鱼b(万条),2010年为第一年),求a1及an+1与an间的关系;
(Ⅱ)当b=10时,试问能否有效控制鱼塘总量不超过19.5(万条)?若有效,说明理由;若无效,请指出哪一年初开始鱼塘中鱼的总量超过19.5(万条).
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.