满分5 > 高中数学试题 >

已知函数f(x)=(2-a)lnx++2ax(a∈R). (Ⅰ)当a=0时,求f...

已知函数f(x)=(2-a)lnx+manfen5.com 满分网+2ax(a∈R).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a<0时,求f(x)单调区间;
(Ⅲ)若对任意a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.
(Ⅰ)当a=0时,f(x)=2lnx+,求导,令f′(x)=0,解方程,分析导数的变化情况,确定函数的极值; (Ⅱ)当a<0时,求导,对导数因式分解,比较两根的大小,确定函数f(x)单调区间; (Ⅲ)若对任意a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求函数f(x)的最大值和最小值,解不等式,可求实数m的取值范围. 【解析】 (Ⅰ)依题意知f(x)的定义域为(0,+∞) 当a=0时,f(x)=2lnx+,f′(x)=-= 令f′(x)=0,解得x=当0<x<时,f′(x)<0; 当x≥时,f′(x)>0 又∵f()=2-ln2 ∴f(x)的极小值为2-2ln2,无极大值 (Ⅱ)f′(x)=-+2a= 当a<-2时,-<,令f′(x)<0,得0<x<-或x>, 令f′(x)>0得-<x< 当-2<a<0时,得->,令f′(x)<0得0<x<或x>-; 令f′(x)>0得<x<-; 当a=-2时,f′(x)=-≤0 综上所述,当a<-2时f(x),的递减区间为(0,-)和(.+∞),递增区间为(-,); 当a=-2时,f(x)在(0,+∞)单调递减; 当-2<a<0时,f(x)的递减区间为(0,)和(-,+∞),递增区间为(,-). (Ⅲ)由(Ⅱ)可知,当a∈(-3,-2)时,f(x)在区间[1,3]上单调递减. 当x=1时,f(x)取最大值;当x=3时,f(x)取最小值; |f(x1)-f(x2)|≤f(1)-f(3)=(1+2a)-[(2-a)ln3++6a]=-4a+(a-2)ln3 ∵(m+ln3)a-ln3>|f(x1)-f(x2)|恒成立,∴(m+ln3)a-2ln3>-4a+(a-2)ln3 整理得ma>-4a,∵a<0,∴m<-4恒成立,∵-3<a<-2, ∴-<-4<-,∴m≤-
复制答案
考点分析:
相关试题推荐
设数列{an}满足条件:a1=8,a2=0,a3=-7,且数列{an+1-an}(n∈N*)是等差数列.
(1)设cn=an+1-an,求数列{cn}的通项公式;
(2)若manfen5.com 满分网,求Sn=b1+b2+…+bn
(3)数列{an}的最小项是第几项?并求出该项的值.
查看答案
在边长为a的正方形ABCD中,E,F分别为BC,CD的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥B-AEF,如图所示.
(Ⅰ)在三棱锥B-AEF中,求证:AB⊥EF;
(Ⅱ)求四棱锥E-AMNF的体积.

manfen5.com 满分网 查看答案
某校为了更好地落实新课改,增加研究性学习的有效性,用分层抽样的方法从其中A、B、C三个学习小组中,抽取若干人进行调研,有关数据见下表(单位:人)
(Ⅰ)求表中x,y的值
(Ⅱ)若从B、C学习小组抽取的人中选2人作感想发言,求这2人都来自C学习小组的概率.
学习小组小组人数抽取人数
A18x
B362
C54y

查看答案
在锐角△ABC中,a、b、c分别是角A、B、C的对边,cosA=manfen5.com 满分网,sinB=manfen5.com 满分网
(Ⅰ)求cos(A+B)的值;(Ⅱ)若a=4,求△ABC的面积.
查看答案
已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a、b∈R满足:f=af(b)+bf(a),f(2)=2,an=manfen5.com 满分网(n∈N*),bn=manfen5.com 满分网(n∈N*),考察下列结论:
①f(0)=f(1);
②f(x)为偶函数;
③数列{bn}为等差数列;
④数列{an}为等比数列,
其中正确的是    .(填序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.