满分5 > 高中数学试题 >

双曲线C与椭圆有相同的焦点,直线为C的一条渐近线. (1)求双曲线C的方程; (...

双曲线C与椭圆manfen5.com 满分网有相同的焦点,直线manfen5.com 满分网为C的一条渐近线.
(1)求双曲线C的方程;
(2)过点P(0,4)的直线l,交双曲线C于A、B两点,交x轴于Q点(Q点与C的顶点不重合),当manfen5.com 满分网,且manfen5.com 满分网时,求Q点的坐标.
(1)先求出椭圆的焦点找到双曲线中的c,再利用直线为C的一条渐近线,求出a和b的关系进而求出双曲线C的方程; (2)先把直线l的方程以及A、B两点的坐标设出来,利用,找到λ1和λ2与A、B两点的坐标和直线l的斜率的关系,再利用A、B两点是直线和双曲线的交点以及,求出直线l的斜率k进而求出Q点的坐标. 【解析】 (Ⅰ)设双曲线方程为 由椭圆 求得两焦点为(-2,0),(2,0), ∴对于双曲线C:c=2,又为双曲线C的一条渐近线 ∴解得a2=1,b2=3, ∴双曲线C的方程为 (Ⅱ)由题意知直线l得斜率k存在且不等于零,设l的方程:y=kx+4,A(x1,y1),B(x2,y2) 则 ∵, ∴. ∴ 同理λ2=-, 所以. 即2k2x1x2+5k(x1+x2)+8=0.(*) 又y=kx+4以及 消去y得(3-k2)x2-8kx-19=0. 当3-k2=0时,则直线l与双曲线得渐近线平行,不合题意,3-k2≠0. 由韦达定理有: 代入(*)式得k2=4,k=±2 ∴所求Q点的坐标为(±2,0).
复制答案
考点分析:
相关试题推荐
袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等.用ξ表示取出的3个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率;
(2)随机变量ξ的概率分布和数学期望;
(3)计分介于20分到40分之间的概率.
查看答案
如图,已知平面A1B1C1平行于三棱锥V-ABC的底面ABC,等边△AB1C所在的平面与底面ABC垂直,且∠ACB=90°,设AC=2a,BC=a
(1)求证直线B1C1是异面直线AB1与A1C1的公垂线;
(2)求点A到平面VBC的距离;
(3)求二面角A-VB-C的大小.

manfen5.com 满分网 查看答案
设函数f(x)=ax-(a+1)ln(x+1),其中a≥-1,求f(x)的单调区间.
查看答案
已知函数f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<manfen5.com 满分网),且y=f(x)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).
(Ⅰ)求ϕ;
(Ⅱ)计算f(1)+f(2)+…+f(2008).
查看答案
下列四个命题中,真命题的序号有    (写出所有真命题的序号).
①将函数y=|x+1|的图象按向量y=(-1,0)平移,得到的图象对应的函数表达式为y=|x|.
②圆x2+y2+4x-2y+1=0与直线y=manfen5.com 满分网相交,所得弦长为2.
③若sin(α+β)=manfen5.com 满分网,sin(α-β)=manfen5.com 满分网,则tanαcotβ=5.
④如图,已知正方体ABCD-A1B1C1D1,P为底面ABCD内一动点,P到平面AA1D1D的距离与到直线CC1的距离相等,则P点的轨迹是抛物线的一部分.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.