利用二倍角的正弦函数公式及同角三角函数间的基本关系化简y的解析式后,再利用配方法把y变为完全平方式即y=(1-sin2x)2+6,可设z═(u-1)2+6,u=sin2x,因为sin2x的范围为[-1,1],根据u属于[-1,1]时,二次函数为递减函数,利用二次函数求最值的方法求出z的最值即可得到y的最大和最小值.
【解析】
y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6
由于函数z=(u-1)2+6在[-1,1]中的最大值为zmax=(-1-1)2+6=10
最小值为zmin=(1-1)2+6=6
故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6