满分5 > 高中数学试题 >

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)...

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)求g(x)在x∈[-1,1]上的最大值;
(2)若g(x)≤t2+λt+1对∀x∈[-1,1]及λ∈(-∞,-1]恒成立,求t的取值范围;
(3)讨论关于x的方程manfen5.com 满分网的根的个数.
(1)先利用f(x)是实数集R上的奇函数求出a,再利用g(x)=λf(x)+sinx是区间[-1,1]上的减函数求出g(-1)即可. (2)利用(1)的结论把问题转化为(t+1)λ+t2+sin1+1≥0在λ∈(-∞,-1]恒成立,再利用图形找到t满足的条件即可. (3)把研究根的个数问题转化为两个函数图象的交点问题,借助于图形可得结论. 【解析】 (1)f(x)=ln(ex+a)是奇函数,则ln(e-x+a)=-ln(ex+a)恒成立. ∴(e-x+a)(ex+a)=1.1+ae-x+aex+a2=1,∴a(ex+e-x+a)=0,∴a=0. 又∵g(x)在[-1,1]上单调递减,∴g(x)max=g(-1)=-λ-sin1, (2)只需-λ-sin1≤t2+λt+1在λ∈(-∞,-1]上恒成立, ∴(t+1)λ+t2+sin1+1≥0在λ∈(-∞,-1]恒成立. 令h(λ)=(t+1)λ+t2+sin1+1(λ≤-1),则 ∴而t2-t+sin1≥0恒成立,∴t≤-1. (3)由(1)知f(x)=x,∴方程为, 令, ∵, 当x∈(0,e)时,f′1(x)≥0,f1(x)在x∈(0,e]上为增函数; x∈[e,+∞)时,f′1(x)≤0,f1(x)在x∈[e,+∞)上为减函数, 当x=e时,. 而f2(x)=(x-e)2+m-e2, ∴函数f1(x)、f2(x)在同一坐标系的大致图象如图所示, ∴①当,即时,方程无解. ②当,即时,方程有一个根. ③当,即时,方程有两个根.
复制答案
考点分析:
相关试题推荐
设数列{an}、{bn}满足manfen5.com 满分网,且manfen5.com 满分网,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对一切n∈N*,证明manfen5.com 满分网成立;
(Ⅲ)记数列{an2}、{bn}的前n项和分别是An、Bn,证明:2Bn-An<4.
查看答案
已知椭圆manfen5.com 满分网的一条准线为x=-4,且与抛物线y2=8x有相同的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点P是该椭圆的左准线与x轴的交点,过点P的直线l与椭圆相交于M、N两点,且线段MN的中点恰好落在由该椭圆的两个焦点、两个短轴顶点所围成的四边形区域内(包括边界),求此时直线l斜率的取值范围.
查看答案
四个纪念币A、B、C、D,投掷时正面向上的概率如下表所示(0<a<1).
manfen5.com 满分网
将这四个纪念币同时投掷一次,设ξ表示正面向上的纪念币的个数.
(Ⅰ)求ξ的取值及相应的概率;
(Ⅱ)求在概率p(ξ)中,p(ξ=2)为最大时,实数a的取值范围.
查看答案
如图,在正三棱柱ABC-A1B1C1中,E为AC的中点.
(I)若manfen5.com 满分网,求点A到平面BEC1的距离;
(Ⅱ)当manfen5.com 满分网为何值时,二面角E-BC1-C的正弦值为manfen5.com 满分网

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)化简函数f(x)的解析式,并求f(x)的最小正周期;
(Ⅱ)若方程manfen5.com 满分网恒有实数解,求实数t的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.