满分5 > 高中数学试题 >

如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E...

如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1).
(1)求证:对任意的λ∈(0,1],都有AC⊥BE;
(2)若二面角C-AE-D的大小为60°,求λ的值.

manfen5.com 满分网
(1)以D为原点,DA,DC,DS的方向分别作为x,y,z轴的正方向建立空间直角坐标系,分别求出,的坐标,计算向量的数量积,只要说明数量积与λ无关即可; (2)分别求出平面ADE与平面ACE的一个法向量,利用二面角C-AE-D的大小为60°建立两法向量的关系式,求出λ的值即可. 【解析】 以D为原点,DA,DC,DS的方向分别作为x,y,z轴的正方向建立如图所示的空间直角坐标系, 则D(0,0,0),A(a,0,0), B(a,a,0),C(0,a,0),E(0,0,λa), (1)证明:∵=(-a,a,0), =(-a,-a,λa),=(a,0,-λa),=(0,a,-λa). ∴•=(-a,a,0)•(-a,-a,λa) =a2-a2+0•λa=0, 即对任意的λ∈(0,1],都有AC⊥BE. (2)=(0,a,0)为平面ADE的一个法向量. 设平面ACE的一个法向量为n=(x,y,z), 则n⊥E,n⊥E, ∴即 取z=1,得n=(λ,λ,1). ∴cos60°═⇔=2|λ|. 由λ∈(0,1],解得λ=.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°
(I)求证:EF⊥平面BCE;
(Ⅱ)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE;
(Ⅲ)求二面角F-BD-A的大小.
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M,
(1)求证:平面ABM⊥平面PCD;
(2)求直线PC与平面ABM所成的角;
(3)求点O到平面ABM的距离.
查看答案
manfen5.com 满分网如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;
(3)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.
查看答案
manfen5.com 满分网如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当manfen5.com 满分网且E为PB的中点时,求AE与平面PDB所成的角的大小.
查看答案
manfen5.com 满分网如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC=10.
(I)设G是OC的中点,证明:FG∥平面BOE;
(II)证明:在△ABO内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.