满分5 > 高中数学试题 >

已知函数f(x)=x2+(x≠0,常数a∈R). (1)讨论函数f(x)的奇偶性...

已知函数f(x)=x2+manfen5.com 满分网(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.
(1)x2为偶函数,欲判函数f(x)=x2+的奇偶性,只需判定的奇偶性,讨论a判定就可. (2)处理函数的单调性问题通常采用定义法好用. 【解析】 (1)当a=0时,f(x)=x2 对任意x∈(-∞,0)∪(0,+∞),有f(-x)=(-x)2=x2=f(x), ∴f(x)为偶函数. 当a≠0时,f(x)=x2+(x≠0,常数a∈R), 取x=±1,得f(-1)+f(1)=2≠0, f(-1)-f(1)=-2a≠0, ∴f(-1)≠-f(1),f(-1)≠f(1). ∴函数f(x)既不是奇函数也不是偶函数. (2)设2≤x1<x2, f(x1)-f(x2)==[x1x2(x1+x2)-a], 要使函数f(x)在x∈[2,+∞)上为增函数, 必须f(x1)-f(x2)<0恒成立. ∵x1-x2<0,x1x2>4, 即a<x1x2(x1+x2)恒成立. 又∵x1+x2>4,∴x1x2(x1+x2)>16, ∴a的取值范围是(-∞,16].
复制答案
考点分析:
相关试题推荐
某森林出现火灾,火势正以每分钟100 m2的速度顺风蔓延,消防站接到警报立即派消防员前去,在火灾发生后五分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火50 m2,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁1 m2森林损失费为60元,问应该派多少消防员前去救火,才能使总损失最少?
查看答案
已知函数f(x)对任意实数x,y均有f(x)+f(y)=2fmanfen5.com 满分网,f(0)≠0,且存在非零常数c,使f(c)=0.
(1)求f(0)的值;
(2)判断f(x)的奇偶性并证明;
(3)求证f(x)是周期函数,并求出f(x)的一个周期.
查看答案
已知实数a>0且a≠1,函数f(x)=logax在区间[a,2a]上的最大值比最小值大manfen5.com 满分网,求实数a的值.
查看答案
规定[x]表示不超过x的最大整数,例如[2.3]=2,[-2.7]=-3,函数y=[x]的图象与函数y=ax的图象在[0,2010)内有2 010个交点,则a的取值范围是    查看答案
已知函数f(x)=manfen5.com 满分网,则不等式f(x)>0的解集为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.