满分5 > 高中数学试题 >

如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α...

如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线.

manfen5.com 满分网
根据推论3及公理2可知,两条平行直线AB和CD可以确定一个平面ABCD,并且平面ABCD与平面α的所有的公共点应该在一条直线上,根据题意,这些公共点即E,G,H,F四点,所以这四点必定共线. 【解析】 ∵AB∥CD, ∴AB,CD确定一个平面β. 又∵AB∩α=E,AB⊂β,∴E∈α,E∈β, 即E为平面α与β的一个公共点. 同理可证F,G,H均为平面α与β的公共点. ∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E,F,G,H四点必定共线.
复制答案
考点分析:
相关试题推荐
空间内五个点中的任意三点都不共线,由这五个点为顶点只构造出四个三棱锥,则这五个点最多可以确定    个平面. 查看答案
四边形ABCD中,AB=BC=CD=DA=BD=1,则成为空间四面体时,AC的取值范围是    查看答案
一个平面把空间分成    部分,两个平面把空间最多分成    部分,三个平面把空间最多分成    部分. 查看答案
有下列命题:
①空间四点中有三点共线,则这四点必共面;
②空间四点中,其中任何三点不共线,则这四点不共面;
③用斜二测画法可得梯形的直观图仍为梯形;
④垂直于同一直线的两直线平行;
⑤两组对边相等的四边形是平行四边形.其中正确的命题是    查看答案
在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF与HG交于点M,那么( )
A.M一定在直线AC上
B.M一定在直线BD上
C.M可能在直线AC上,也可能在直线BD上
D.M既不在直线AC上,也不在直线BD上
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.