满分5 > 高中数学试题 >

已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(a为常数,a≠0...

已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(a为常数,a≠0,a≠1).
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=an2+Sn•an,若数列{bn}为等比数列,求a的值;
(Ⅲ)在满足条件(Ⅱ)的情形下,manfen5.com 满分网,数列{cn}的前n项和为Tn.求证:Tn>2n-manfen5.com 满分网
(Ⅰ)由题意知a1=a,Sn=a(Sn-an+1),Sn-1=a(Sn-1-an-1+1),由此可知an=a•an-1,,所以an=a•an-1=an. (Ⅱ)由题意知a≠1,,,由此可解得. (Ⅲ)证明:由题意知,所以=,由此可知Tn>2n-. 【解析】 (Ⅰ)S1=a(S1-a1+1) ∴a1=a,.(1分) 当n≥2时,Sn=a(Sn-an+1),Sn-1=a(Sn-1-an-1+1), 两式相减得:an=a•an-1, (a≠0,n≥2)即{an}是等比数列. ∴an=a•an-1=an;(4分) (Ⅱ)由(Ⅰ)知a≠1, ,, 若{bn}为等比数列,则有b22=b1b3, 而b1=2a2,b2=a3(2a+1),b3=a4(2a2+a+1)(6分) 故[a3(2a+1)]2=2a2•a4(2a2+a+1),解得,(7分) 再将a=代入得bn=()n成立,所以a=.(8分) (Ⅲ)证明:由(Ⅱ)知, 所以==(10分) 所以 Tn=c1+c2++cn+(2-) =(12分)
复制答案
考点分析:
相关试题推荐
一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.
(Ⅰ)判断manfen5.com 满分网,f2(x)=x,f3(x)=x2中,哪些是“保三角形函数”,哪些不是,并说明理由;
(Ⅱ)如果g(x)是定义在R上的周期函数,且值域为(0,+∞),证明g(x)不是“保三角形函数”;
(Ⅲ)若函数F(x)=sinx,x∈(0,A)是“保三角形函数”,求A的最大值.
(可以利用公式manfen5.com 满分网
查看答案
已知函数y=f(x)是定义域为R的偶函数,其图象均在x轴的上方,对任意的m、n∈[0,+∞),都有f=[f(m)]n,且f(2)=4,又当x≥0时,其导函数f′(x)>0恒成立.
(Ⅰ)求F(0)、f(-1)的值;
(Ⅱ)解关于x的不等式:manfen5.com 满分网,其中k∈(-1,1).
查看答案
已知数列{an}前n项的和为Sn,前n项的积为Tn,且满足Tn=2n(1-n)
①求a1
②求证:数列{an}是等比数列;
③是否存在常数a,使得(Sn+1-a)2=(Sn+2-a)(Sn-a)对n∈N+都成立?若存在,求出a,若不存在,说明理由.
查看答案
已知函数manfen5.com 满分网
(I)当a=1时,若函数g(x)在区间(-1,1)上是增函数,求实数c的取值范围;
(II)当manfen5.com 满分网时,求证:对任意的x∈[0,1],g/(x)≤1的充要条件是manfen5.com 满分网
查看答案
已知数列{an}满足a1=1,an+1=2an+1(n∈N*
(1)求数列{an}的通项公式;
(2)若数列{bn}满足manfen5.com 满分网,证明:{bn}是等差数列;
(3)证明:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.