登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
求(1+2x-3x2)6展开式里x5的系数为 .
求(1+2x-3x
2
)
6
展开式里x
5
的系数为
.
先利化简,再用二项式定理的展开式中的通项求出特定项的系数,求出特定项的系数即可. 【解析】 (1+2x-3x2)6=(x-1)6(3x+1)6 (x-1)6的二项式定理的展开式的通项为Tr+1=C6rx6-r(-1)r (3x+1)6的二项式定理的展开式的通项为Tr+1=C6r(3x)6-r (1+2x-3x2)6展开式里x5的系数为C61(-1)1C66+C62(-1)2C653+C63(-1)3C6432+C64C6333+-C65C6234+C66C6135=-168, 故答案为-168
复制答案
考点分析:
相关试题推荐
在
的展开式中,有理项的项数为
.
查看答案
在
的展开式中常数项是
;中间项是
.
查看答案
已知
的展开式中x
3
的系数为
,常数a的值为
.
查看答案
(x+2)
10
(x
2
-1)的展开式中x
10
的系数为
(用数字作答).
查看答案
由
展开所得的x的多项式中,系数为有理数的共有( )
A.50项
B.17项
C.16项
D.15项
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.