把题设中的等式相减,求得an-bn=2an-1-bn-1推断出数列{an-bn}为等比数列,公比为2,进而求得数列{an-bn}的通项公式,代入到an=5an-1-6bn-1中,整理求得an=bn+(a-b)2n-1,进而根据an=5an-1-6bn-1,求得bn=-bn-1+3(a-b)2n-2,设cn=bn-(a-b)2n-1,推断出cn=-c(n-1),判断出数列{cn}为等比数列,根据首项和公比求得其通项公式,则bn可得,进而利用an=bn+(a-b)2n-1求得an.
【解析】
∵an=5an-1-6bn-1,bn=3an-1-4bn-1,
两式相减得,an-bn=2an-1-bn-1
∴数列{an-bn}为等比数列,公比为2
∴an-bn=(a1-b1)2n-1
=(a-b)2n-1
∴an=bn+(a-b)2n-1
an-1=bn-1+(a-b)2n-2
∴bn+(a-b)2n-1=5[bn-1+(a-b)2n-2)]-6bn-1
bn=-bn-1+3(a-b)2n-2
设cn=bn-(a-b)2n-1,c1=b1-(a-b)=2b-a
cn=-c(n-1)
∴cn=c1(-1)n-1=(2b-a)(-1)n-1
即bn-(a-b)2n-1=cn=(2b-a)(-1)n-1
bn=(a-b)2n-1+(2b-a)(-1)n-1
∴an=bn+(a-b)2n-1=(a-b)2n+(2b-a)(-1)n-1
∴an=(a-b)2n+(2b-a)(-1)n-1
bn=(a-b)2n-1+(2b-a)(-1)n-1