(1)由已知3tSn-(2t+3)Sn-1=3t,可得3tsn-1-(2t+3)sn-2=3t,两式相减可得数列an与an-1的递推关系,从而可证.
(2)由(1)可得f(t),代入整理可得,利用等差数列的通项公式可求.
(3)考虑到,从而可以把所求式两项结合,而结合的组数则根据n的值而定,从而需对n分为奇数和偶数两种情讨论.
【解析】
(1)∵3tsn-(2t+3)sn-1=3t∴3tsn-1-(2t+3)sn-2=3t(n>2)
两式相减可得3t(sn-sn-1)-(2t+3)(sn-1-sn-2)=0
整理可得3tan=(2t+3)an-1(n≥3)
∴
∵a1=1∴即
数列{an}是以1为首项,以为公比的等比数列
(2)由(1)可得f(t)=
在数列{bn}中,=
∴
数列{bn}以1为首项,以为公差的等差数列
∴
(3)当n为偶数时Sn=b1b2-b2b3+b3b4-…+(-1)n-1bnbn+1
=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1)
=
=
当n为奇数时Sn=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1)+bnbn+1
=
=
=