如图,⊙O
1和⊙O
2公切线AD和BC相交于点D,A、B、C为切点,直线DO
1与⊙O
1与E、G两点,直线DO
2交⊙O
2与F、H两点.
(1)求证:△DEF~△DHG;
(2)若⊙O
1和⊙O
2的半径之比为9:16,求

的值.
考点分析:
相关试题推荐
已知函数f(x)=

x
2+2ax,g(x)=3a
2lnx+b.其中a,b∈R.
(1)设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同,若a>0,试建立b关于a的函数关系式;
(2)在(1)的条件下求b的最大值;
(3)若b=0时,函数h(x)=f(x)+g(x)-(2a+6)x在(0,4)上为单调函数,求a的取值范围.
查看答案
如图,已知椭圆

的离心率为

,其右焦点F是圆(x-1)
2+y
2=1的圆心.
(1)求椭圆方程;
(2)过所求椭圆上的动点P作圆的两条切线分别交y轴于M(0,m),N(0,n)两点,当

时,求此时点P的坐标.
查看答案

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求证:DM∥平面PCB;
(3)求平面PAD与平面PBC所成锐二面角的大小.
查看答案
已知向量m=(

,

),n=(

,

),记f(x)=m•n;
(1)若f(x)=1,求

的值;
(2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函
数f(A)的取值范围.
查看答案
某班50名学生在一模数学考试中,成绩都属于区间[60,110].将成绩按如下方式分成五组:
第一组[60,70);第二组[70,80);第三组[80,90);第四组[90,100);第五组[100,110].
部分频率分布直方图如图所示,及格(成绩不小于90分)的人数为20.
(1)在成绩属于[70,80)∪[90,100]的学生中任取两人,成绩记为m,n,求|m-n|>10的概率;
(2)在该班级中任取4人,其中及极格人数记为随机变量X,写出X的分布列(结果只要求用组合数表示),并求出期望E(X).
查看答案