满分5 > 高中数学试题 >

如图,⊙O与⊙P相交于A、B两点,圆心P在⊙O上,⊙O的弦BC切⊙P于点B,CP...

如图,⊙O与⊙P相交于A、B两点,圆心P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长线交⊙P于D,E两点,过点E作EF⊥CE,交CB的延长线于点F.
(I)求证:四点B、P、E、F共圆;
(II)若CD=2,manfen5.com 满分网,求出由四点B、P、E、F所确定圆的直径.

manfen5.com 满分网
(1)欲证四点B、P、E、F共圆,只要通过三角形Rt△CBP和Rt△CEF相似证明由此四点构成的四边形对角互补即可; (2)先根据(1)中四点B,P,E,F共圆条件得切线,再由切割线定理及三角形相似求得EF,最后再结合勾股定理求得PF即为所求圆的直径即可. 证明:(I)连接PB.∵BC切⊙P于点B, ∴PB⊥BC. 又∵EF⊥CE,且∠PCB=∠FCE, ∴Rt△CBP∽Rt△CEF, ∴∠CPB=∠CFE, ∴∠EPB+∠EFB=180°, ∴四点B,P,E,F共圆(5分) (II)∵四点B,P,E,F共圆,且EF⊥CE,PB⊥BC, ∴此圆的直径就是PF. ∵BC切⊙P于点B,且, ∴由切割线定理CB2=CD•CE,得:CE=4,DE=2,BP=1. 又∵Rt△CBP∽Rt△CEF,∴EF:PB=CE:CB,得. 在Rt△FEP中,, 即由四点B,P,E,F确定圆的直径为(10分)
复制答案
考点分析:
相关试题推荐
如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥AB,AC=AA1=1,AB=2,P为线段AB上的动点.
(I)求证:CA1⊥C1P;
(II)若四面体P-AB1C1的体积为manfen5.com 满分网,求二面角C1-PB1-A1的余弦值.

manfen5.com 满分网 查看答案
如图,C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB平分线DC交AE于点F,交AB于D点.
(I)求∠ADF的度数;
(II)若AB=AC,求AC:BC.

manfen5.com 满分网 查看答案
已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,侧棱与底面所成角为θ,点B1在底面上射影D落在BC上.
(I)求证:AC⊥平面BB1C1C;
(II)若点D恰为BC中点,且AB1⊥BC1,求θ的大小;
(III)若manfen5.com 满分网,且当AC=BC=AA1=a时,求二面角C-AB-C1的大小.

manfen5.com 满分网 查看答案
如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,过点D作⊙O的切线交BC于E,AE交⊙O于点F.
(1)证明:E是BC的中点;
(2)证明:AD•AC=AE•AF.

manfen5.com 满分网 查看答案
如图,在正四棱柱ABCD-A1B1C1D1中,manfen5.com 满分网,点E在棱CC1上.
(1)若B1E⊥BC1,求证:AC1⊥平面B1D1E.
(2)设manfen5.com 满分网,问是否存在实数λ,使得平面AD1E⊥平面B1D1E,若存在,求出λ的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.