满分5 > 高中数学试题 >

如图,C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB平分线DC交AE于...

如图,C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB平分线DC交AE于点F,交AB于D点.
(I)求∠ADF的度数;
(II)若AB=AC,求AC:BC.

manfen5.com 满分网
(I)根据AC为圆O的切线,结合弦切角定理,我们易得∠B=∠EAC,结合DC是∠ACB的平分线,根据三角形外角等于不相邻两个内角的和,我们易得∠ADF=∠AFD,进而结合直径所对的圆周角为直角,求出∠ADF的度数; (II)若AB=AC,结合(1)的结论,我们易得∠ACB=30°,根据顶角为120°的等腰三角形三边之比为:1:1:,易得答案. 【解析】 (I)∵AC为圆O的切线, ∴∠B=∠EAC 又知DC是∠ACB的平分线, ∴∠ACD=∠DCB ∴∠B+∠DCB=∠EAC+∠ACD 即∠ADF=∠AFD 又因为BE为圆O的直径, ∴∠DAE=90° ∴(4分) (II)∵∠B=∠EAC,∠ACB=∠ACB, ∴△ACE∽△ABC ∴(6分) 又∵AB=AC, ∴∠B=∠ACB=30°,(8分) ∴在RT△ABE中, (10分)
复制答案
考点分析:
相关试题推荐
已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,侧棱与底面所成角为θ,点B1在底面上射影D落在BC上.
(I)求证:AC⊥平面BB1C1C;
(II)若点D恰为BC中点,且AB1⊥BC1,求θ的大小;
(III)若manfen5.com 满分网,且当AC=BC=AA1=a时,求二面角C-AB-C1的大小.

manfen5.com 满分网 查看答案
如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,过点D作⊙O的切线交BC于E,AE交⊙O于点F.
(1)证明:E是BC的中点;
(2)证明:AD•AC=AE•AF.

manfen5.com 满分网 查看答案
如图,在正四棱柱ABCD-A1B1C1D1中,manfen5.com 满分网,点E在棱CC1上.
(1)若B1E⊥BC1,求证:AC1⊥平面B1D1E.
(2)设manfen5.com 满分网,问是否存在实数λ,使得平面AD1E⊥平面B1D1E,若存在,求出λ的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.
(Ⅰ)求证:∠P=∠EDF;
(Ⅱ)求证:CE•EB=EF•EP.

manfen5.com 满分网 查看答案
如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积;
(3)求证:CE⊥AF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.