满分5 > 高中数学试题 >

如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,△ABC为边长为2的...

manfen5.com 满分网如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,△ABC为边长为2的正三角形,点P在A1B上,且AB⊥CP.
(1)证明:P为A1B中点.
(2)若A1B⊥AC1,求二面角B1-PC-B的余弦值.
(1)取AB中点Q,连接PQ,由于CQ⊥AB,AB⊥CP,根据线面垂直的判定定理可知AB⊥平面CPO,从而得到AB⊥PQ又A1A⊥AB得A1A∥PQ,而点Q是AB的中点,得到P为A1B的中点; (2)连接AB1,取AC中点R,连接A1R,连B1A,B1R,BR,过B作BH⊥B1R,垂足为H,过B作BG⊥PC,连接GH,根据二面角的平面角的定义可知∠BGH为二面角B1-PC-B的平面角,在三角形BGH中求出此角即可. 【解析】 (1)证明:取AB中点Q,∴CQ⊥AB 又∵AB⊥CP,∴AB⊥平面CPO∴AB⊥PQ,A1A⊥AB 得A1A∥PQ,点Q是AB的中点 ∴P为A1B的中点(4分) (2)连接AB1,取AC中点R,连接A1R, 则BR⊥平面A1C1CA,∴BR⊥AC1,由已知A1B⊥AC1,∴A1R⊥AC1,∴△AC1C~△A1RA∴,∴(6分) 则,则AC=2 连B1A,B1R,BR,∵AC⊥平面B1BR,∴平面B1AC⊥平面B1BR, 平面B1AC∩平面B1BR=B1R,过B作BH⊥B1R,垂足为H, 则BH⊥平面B1PC,过B作BG⊥PC, 连接GH,那么∠BGH为二面角B1-PC-B的平面角(8分) 在△B1BR中,在△PBC中,(10分)∴∴(12分)
复制答案
考点分析:
相关试题推荐
如图,⊙O1和⊙O2公切线AD和BC相交于点D,A、B、C为切点,直线DO1与⊙O1与E、G两点,直线DO2交⊙O2与F、H两点.
(1)求证:△DEF~△DHG;
(2)若⊙O1和⊙O2的半径之比为9:16,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求证:DM∥平面PCB.
查看答案
如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.
(1)求证:FB=FC;
(2)求证:FB2=FA•FD;
(3)若AB是△ABC外接圆的直径,且∠EAC=120°,BC=6,求AD的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(1)求证:BD⊥平面ADG.
(2)求平面AEFG与平面ABCD所成锐二面角的余弦值.
查看答案
manfen5.com 满分网如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(I)求证:AD∥EC;
(II)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.