满分5 > 高中数学试题 >

如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEF...

manfen5.com 满分网如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(1)求证:BD⊥平面ADG.
(2)求平面AEFG与平面ABCD所成锐二面角的余弦值.
(1)欲证BD⊥平面ADG,根据直线与平面垂直的判定定理可知只需证BD⊥平面ADG内两相交直线垂直,而AD⊥BD,GD⊥BD, GD∩AD=D,满足定理条件; (2)以D为坐标原点,OA为x轴,OB为y轴,OG为z轴建立空间直角坐标系D-xyz,分别求出平面AEFG法向量和平面ABCD的一个法向量,然后求出两法向量的夹角的余弦值,即可求出平面AEFG与平面ABCD所成锐二面角的余弦值. 【解析】 (1)证明:在△BAD中,AB=2AD=2,∠BAD=60°, 由余弦定理得,BD=∴AB2=AD2+BD2. ∴AD⊥BD(2分) 又GD⊥平面ABCD ∴GD⊥BD, GD∩AD=D, ∴BD⊥平面ADG(4分) (2)以D为坐标原点,OA为x轴,OB为y轴,OG为z轴建立空间直角坐标系D-xyz 则有A(1,0,0),B(0,,0),G(0,0,1),E(0,)(6分) 设平面AEFG法向量为m=(x,y,z) 则, 取(9分) 平面ABCD的一个法向量(10分) 设面ABFG与面ABCD所成锐二面角为θ, 则(12分) ∴平面AEFG与平面ABCD所成锐二面角的余弦值为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(I)求证:AD∥EC;
(II)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.
查看答案
如图所示,在三棱柱ABC-A1B1C1中,侧面A1ABB1和BCC1B1是两个全等的正方形,AC1⊥平面A1DB,D为AC的中点.
(1)求证:平面A1ABB1⊥平面BCC1B1
(2)求证:B1C∥平面A1DB.

manfen5.com 满分网 查看答案
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F.
(1)求证:∠PFD=∠OCP;
(2)求证:PF•PO=PB•PA.

manfen5.com 满分网 查看答案
已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.
(1)求证:EF⊥平面PAD;
(2)求平面EFG与平面ABCD所成锐二面角的大小;
(3)若M为线段AB上靠近A的一个动点,问当AM长度等于多少时,直线MF与平面EFG所成角的正弦值等于manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F,且AB=2BP=4,
(1)求PF的长度.
(2)若圆F与圆O内切,直线PT与圆F切于点T,求线段PT的长度.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.