满分5 > 高中数学试题 >

如图1所示,在边长为12的正方形AA′A′1A1中,BB1∥CC1∥AA1,且A...

manfen5.com 满分网如图1所示,在边长为12的正方形AA′A′1A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA′1分别交BB1,CC1于点P、Q,将该正方形沿BB1、CC1折叠,使得A′A′1与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1,请在图2中解决下列问题:
(1)求证:AB⊥PQ;
(2)在底边AC上有一点M,满足AM;MC=3:4,求证:BM∥平面APQ.
(3)求直线BC与平面APQ所成角的正弦值.
(1)由AB⊥BC.AB⊥BB1,得AB⊥平面BC1,易得AB⊥PQ; (2)过M作MN∥CQ交AQ于N,连接PN,由PB∥CQ得MN∥PB,从而四边形PBMN为平行四边形,对边平行BM∥PN,由线面平行的判定定理得BM∥平面APQ; (3)先求得各点的坐标,从而得出相应向量的坐标,再求出平面APQ的法向量,由线面角公式求解. 【解析】 证明:(1)证明:因为AB=3,BC=4, 所以AC=5,从而AC2=AB2+BC2, 即AB⊥BC.(2分) 又因为AB⊥BB1,而BC∩BB1=B, 所以AB⊥平面BC1,又PQ⊂平面BC1 所以AB⊥PQ;(4分) (2)【解析】 过M作MN∥CQ交AQ于N,连接PN, 因为AM:MC=3:4∴AM:AC=MN:CQ=3:7(6分) ∴MN=PB=3,∵PB∥CQ∴MN∥PB,∴四边形PBMN为平行四边形∴BM∥PN,所以BM∥平面APQ(8分) (3)【解析】 由图1知,PB=AB=3,QC=7,分别以BA,BC,BB1为x,y,z轴, 则A(3,0,0),C(0,4,0),P(0,0,3),Q(0,4,7)(10分) 设平面APQ的法向量为, 所以得, 令a=1,则c=1,b=-1, 所以直线BC与平面APQ所成角的正弦值为(12分) (注)用其他解法可相应给分.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,AB是⊙O的直径,C,F是⊙O上的点,OC垂直于直径AB,
过F点作⊙O的切线交AB的延长线于D、连接CF交AB于E点,
(1)求证:DE2=DB•DA;
(2)若⊙O的半径为manfen5.com 满分网,OB=manfen5.com 满分网OE,求EF的长.
查看答案
manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,P为A1C1的中点,AB=BC=kPA.
(I)当k=1时,求证PA⊥B1C;
(II)当k为何值时,直线PA与平面BB1C1C所成的角的正弦值为manfen5.com 满分网,并求此时二面角A-PC-B的余弦值.
查看答案
manfen5.com 满分网如图,AB、CD是圆的两条平行弦,BE∥AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.
(I)求AC的长;
(II)求证:BE=EF.
查看答案
manfen5.com 满分网已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.
(I)求证:DE∥平面ABC;
(Ⅱ)求证:B1F⊥平面AEF;
(Ⅲ)求二面角B1-AE-F的余弦值.
查看答案
manfen5.com 满分网已知:在直角三角形ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,连接DO并延长交AC的延长线于点E,⊙O的切线DF交AC于F点.
(Ⅰ)试证明:AF=CF;
(Ⅱ)若ED=4,manfen5.com 满分网,求CE的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.