满分5 > 高中数学试题 >

如图,AB是⊙O的直径,C,F是⊙O上的点,OC垂直于直径AB, 过F点作⊙O的...

manfen5.com 满分网如图,AB是⊙O的直径,C,F是⊙O上的点,OC垂直于直径AB,
过F点作⊙O的切线交AB的延长线于D、连接CF交AB于E点,
(1)求证:DE2=DB•DA;
(2)若⊙O的半径为manfen5.com 满分网,OB=manfen5.com 满分网OE,求EF的长.
(1)连接OF,利用切线的性质及角之间的互余关系得到DF=DE,再结合切割线定理即可证明DE2=DB•DA; (2)由圆中相交弦定理得CE•EF=AE•EB,结合直角三角形中边的关系,先求出AE和EB,从而求出EF的长. 【解析】 (1)连接OF, ∵DF切⊙O于F, ∴∠OFD=90°, ∴∠OFC+∠CFD=90°, ∵OC=OF, ∴∠OCF=∠OFC, ∵CO⊥AB于O, ∴∠OCF+∠CEO=90°, ∴∠CFD=∠CEO=∠DEF, ∴DF=DE, ∵DF是⊙O的切线, ∴DF2=DB•DA, ∴DE2=DB•DA; (2),CO=,, ∵CE•EF=AE•EB=(+2)(-2)=8, ∴EF=2
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,P为A1C1的中点,AB=BC=kPA.
(I)当k=1时,求证PA⊥B1C;
(II)当k为何值时,直线PA与平面BB1C1C所成的角的正弦值为manfen5.com 满分网,并求此时二面角A-PC-B的余弦值.
查看答案
manfen5.com 满分网如图,AB、CD是圆的两条平行弦,BE∥AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.
(I)求AC的长;
(II)求证:BE=EF.
查看答案
manfen5.com 满分网已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.
(I)求证:DE∥平面ABC;
(Ⅱ)求证:B1F⊥平面AEF;
(Ⅲ)求二面角B1-AE-F的余弦值.
查看答案
manfen5.com 满分网已知:在直角三角形ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,连接DO并延长交AC的延长线于点E,⊙O的切线DF交AC于F点.
(Ⅰ)试证明:AF=CF;
(Ⅱ)若ED=4,manfen5.com 满分网,求CE的长.
查看答案
manfen5.com 满分网如图所示,已知多面体PABCD的直观图(图1)和它的三视图(图2),
(I)在棱PA上是否存在点E,使得PC∥平面EBD?若存在,求PE:PA的值,并证明你的结论;若不存在,说明理由;
(II)求二面角B-PC-D的大小.(若不是特殊角请用反三角函数表示)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.