满分5 > 高中数学试题 >

已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,...

manfen5.com 满分网已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.
(I)求证:DE∥平面ABC;
(Ⅱ)求证:B1F⊥平面AEF;
(Ⅲ)求二面角B1-AE-F的余弦值.
建立空间直角坐标系,求出相关向量 (I)要证:DE∥平面ABC,只需证明向量DE与平面ABC的法向量数量积=0即可; (II)要证:B1F⊥平面AEF,只需证明=0,=0即可; (III)求二面角B1-AE-F的余弦值,只需求出平面B1AE的法向量为, 平面AEF的法向量为,利用数量积确定二面角的余弦值. 也可以用几何法证明: (I)要证DE∥平面ABC,只需证明DE平行平面ABC内的直线DG(设G是AB的中点,连接DG,); (II)求证B1F⊥平面AEF,只需证明B1F垂直平面AEF内的两条相交直线AF、EF即可; (III)过F做FM⊥AE于点M,连接B1M,说明∠B1MF为二面角B1-AE-F的平面角,然后求二面角B1-AE-F的余弦值. 【解析】 方法1:如图建立空间直角坐标系O-xyz,令AB=AA1=4, 则A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0), B1(4,0,4),D(2,0,2),(2分) (I)=(-2,4,0),面ABC的法向量为=(0,0,4), ∵,DE⊄平面ABC, ∴DE∥平面ABC.(4分) (II), =0 =0(6分) ∴,∴B1F⊥AF ∵AF∩FE=F,∴B1F⊥平面AEF(8分) (III)平面AEF的法向量为,设平面B1AE的法向量为, ∴,即(10分) 令x=2,则Z=-2,y=1,∴ ∴= ∴二面角B1-AE-F的余弦值为(12分) 方法2:(I)方法i:设G是AB的中点,连接DG, 则DG平行且等于EC,(2分) 所以四边形DECG是平行四边形,所以DE∥GC, 从而DE∥平面ABC.(4分) 方法ii:连接A1B、A1E,并延长A1E交AC的延长线 于点P,连接BP.由E为C1C的中点,A1C1∥CP, 可证A1E=EP,(2分) ∵D、E是A1B、A1P的中点,∴DE∥BP, 又∵BP⊂平面ABC,DE⊄平面ABC,∴DE∥平面ABC(4分) (II)∵△ABC为等腰直角三角形,F为BC的中点, ∴BC⊥AF,又∵B1B⊥平面ABC,可证B1F⊥AF,(6分) 设AB=AA1=2,则 ∴B1F⊥EF,∴B1F⊥平面AEF;(8分) (III)过F做FM⊥AE于点M,连接B1M, ∵B1F⊥平面AEF,由三垂线定理可证B1M⊥AE, ∴∠B1MF为二面角B1-AE-F的平面角, C1C⊥平面ABC,AF⊥FC,可证EF⊥AF, 在Rt△AEF中,可求,(10分) 在Rt△B1FM中,∠B1FM=90°,∴ ∴二面角B1-AE-F的余弦值为(12分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知:在直角三角形ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,连接DO并延长交AC的延长线于点E,⊙O的切线DF交AC于F点.
(Ⅰ)试证明:AF=CF;
(Ⅱ)若ED=4,manfen5.com 满分网,求CE的长.
查看答案
manfen5.com 满分网如图所示,已知多面体PABCD的直观图(图1)和它的三视图(图2),
(I)在棱PA上是否存在点E,使得PC∥平面EBD?若存在,求PE:PA的值,并证明你的结论;若不存在,说明理由;
(II)求二面角B-PC-D的大小.(若不是特殊角请用反三角函数表示)
查看答案
α、β是两个平行平面,在α内取四个点,在β内取五个点.
(1)这些点最多能确定几条直线?几个平面?
(2)以这些点为顶点最多能作多少个三棱锥?
查看答案
(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数为几种?
(2)有5个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种?
(3)现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,问名额分配的方法共有多少种?
查看答案
(文)10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到4只次品全测完为止.求第4只次品正好在第五次测试时被发现的不同情形有多少种?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.