登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=...
如图所示,在直三棱柱ABC-A
1
B
1
C
1
中,AB=1,AC=AA
1
=
,∠ABC=60°.
(1)证明:AB⊥A
1
C;
(2)求二面角A-A
1
C-B的余弦值.
(1)欲证AB⊥A1C,而A1C⊂平面ACC1A1,可先证AB⊥平面ACC1A1,根据三棱柱ABC-A1B1C1为直三棱柱,可知AB⊥AA1,由正弦定理得AB⊥AC,满足线面垂直的判定定理所需条件; (2)作AD⊥A1C交A1C于D点,连接BD,由三垂线定理知BD⊥A1C,则∠ADB为二面角A-A1C-B的平面角,在Rt△BAD中,求出二面角A-A1C-B的余弦值即可. 【解析】 (1)证明:∵三棱柱ABC-A1B1C1为直三棱柱,∴AB⊥AA1,在△ABC中,AB=1,AC=,∠ABC=60°,由正弦定理得∠ACB=30°, ∴∠BAC=90°,即AB⊥AC, ∴AB⊥平面ACC1A1, 又A1C⊂平面ACC1A1, ∴AB⊥A1C. (2)如图,作AD⊥A1C交A1C于D点,连接BD, 由三垂线定理知BD⊥A1C, ∴∠ADB为二面角A-A1C-B的平面角. 在Rt△AA1C中,AD===, 在Rt△BAD中,tan∠ADB==, ∴cos∠ADB=, 即二面角A-A1C-B的余弦值为.
复制答案
考点分析:
相关试题推荐
椐统计,某食品企业一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1
(Ⅰ)求该企业在一个月内共被消费者投诉不超过1次的概率;
(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.
查看答案
已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
)的周期为π,且图象上一个最低点为
.
(Ⅰ)求f(x)的解析式;
(Ⅱ)当
,求f(x)的最值.
查看答案
某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有
人.
查看答案
已知球O的半径为2,圆O
1
是一小圆,
,A、B是圆O
1
上两点,若∠AO
1
B=
,则A,B两点间的球面距离为
.
查看答案
设x,y满足约束条件
,则x+2y的最小值是
,最大值是
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.