满分5 > 高中数学试题 >

设函数f(x)=x|x-1|+m,g(x)=lnx. (1)当m>1时,求函数y...

设函数f(x)=x|x-1|+m,g(x)=lnx.
(1)当m>1时,求函数y=f(x)在[0,m]上的最大值;
(2)记函数p(x)=f(x)-g(x),若函数p(x)有零点,求m的取值范围.
(1)化简函数f(x)的解析式,分别在[0,1]和(1,m]上求函数的最大值. (2)函数有零点即对应方程有解,得到m的解析式m=h(x),通过导数符号确定h(x)=lnx-x|x-1|的单调性,由h(x)的单调性确定h(x)的取值范围,即得m的取值范围. 【解析】 (1)当x∈[0,1]时,f(x)=x(1-x)+m= ∴当时, 当x∈(1,m]时,f(x)=x(x-1)+m= ∵函数y=f(x)在(1,m]上单调递增,∴f(x)max=f(m)=m2 由得:又m>1. ∴当时,f(x)max=m2; 当时,. (2)函数p(x)有零点即方程f(x)-g(x)=x|x-1|-lnx+m=0有解, 即m=lnx-x|x-1|有解 令h(x)=lnx-x|x-1|,当x∈(0,1]时,h(x)=x2-x+lnx ∵ ∴函数h(x)在(0,1]上是增函数,∴h(x)≤h(1)=0 当x∈(1,+∞)时,h(x)=-x2+x+lnx. ∵=<0 ∴函数h(x)在(1,+∞)上是减函数,∴h(x)<h(1)=0 ∴方程m=lnx-x|x-1|有解时,m≤0, 即函数p(x)有零点时m≤0
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+ax+blnx(x>0,实数a,b为常数).
(Ⅰ)若a=1,b=-1,求函数f(x)的极值;
(Ⅱ)若a+b=-2,讨论函数f(x)的单调性.
查看答案
已知函数f(x)=x2-2lnx,h(x)=x2-x+a.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设函数k(x)=f(x)-h(x),若函数k(x)在[1,3]上恰有两个不同零点,求实数a的取值范围.
查看答案
求函数极限:manfen5.com 满分网
查看答案
求函数极限:manfen5.com 满分网
查看答案
求函数极限:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.