本题考查的知识点是必要条件、充分条件与充要条件的判断及绝对值不等式的解法,根据充要条件的定义,依次分析四个答案,即可找到使|a|+|b|>1成立的充分不必要条件.
【解析】
∵|a|+|b|≥|a+b|,
则当|a+b|≥1时,|a|+|b|≥1,
即|a|+|b|>1不一定成立,
故A答案不是|a|+|b|>1成立的充分条件
当时,,|a|+|b|≥1,
即|a|+|b|>1不一定成立,
故B答案不是|a|+|b|>1成立的充分条件
当a≥1时,|a|≥1,
则|a|+|b|≥1
即|a|+|b|>1不一定成立,
故C答案不是|a|+|b|>1成立的充分条件
当b<-1时,|b|>1
则|a|+|b|>1一定成立,
但|a|+|b|>1成立时,b<-1不一定成立
故D答案是|a|+|b|>1成立的充分不必要条件
故选D