满分5 > 高中数学试题 >

已知函数. (1)若函数y=f(x)的图象关于直线x=a(a>0)对称,求a的最...

已知函数manfen5.com 满分网
(1)若函数y=f(x)的图象关于直线x=a(a>0)对称,求a的最小值;
(2)若存在manfen5.com 满分网,使mf(x)-2=0成立,求实数m的取值范围.
(1)先利用降幂公式进行化简,然后利用辅助角公式将f(x)化成,最后根据正弦函数的对称性求出对称轴,求出a的最小值即可; (2)根据的范围求出2x+的范围,再结合正弦函数单调性求出函数的值域,从而可求出m的范围. 【解析】 (1)因为= 所以函数f(x)的图象的对称轴由下式确定: 从而.由题可知当k=0时,a有最小值; (2)当时,, 从而,则f(x)∈[-1,2] 由mf(x)-2=0可知:m≥1或m≤-2.
复制答案
考点分析:
相关试题推荐
已知在数列{an}中,a1=t,a2=t2,其中t>0,x=manfen5.com 满分网是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点
(Ⅰ)求数列{an}的通项公式
(Ⅱ)当t=2时,令manfen5.com 满分网,数列{bn}前n项的和为Sn,求证:Snmanfen5.com 满分网
(Ⅲ)设manfen5.com 满分网,数列{cn}前n项的和为Tn,求同时满足下列两个条件的t的值:
(1)manfen5.com 满分网
(2)对于任意的manfen5.com 满分网,均存在k∈N*,当n≥k时,Tn>m.
查看答案
设直线l:y=kx+m与x轴、y轴正半轴分别交于A、B两点,M、N是直线l上两点且manfen5.com 满分网,曲线C过点M、N.
(1)若曲线C的方程是x2+y2=20,求直线l的方程;
(2)若曲线C是中心在原点、焦点在x轴上的椭圆且离心率manfen5.com 满分网,求直线l斜率的取值范围.
查看答案
如图,在正方体ABCD-A1B1C1D1中,E、F、M分别是棱B1C1、B1B1、C1D1的中点.
(Ⅰ)求证:CF⊥平面EAB;
(Ⅱ)是否存在过E、M点且与平面A1FC平行的平面?若存在,请指出并证明之;若不存在,请说明
理由.

manfen5.com 满分网 查看答案
已知函数f(x)=alnx-ax-3(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数manfen5.com 满分网在区间(t,3)上总不是单调函数,求m的取值范围;
(Ⅲ)求证:manfen5.com 满分网
查看答案
在四棱锥P-ABCD中,AD⊥AB,CD∥AB,PD⊥底面ABCD,manfen5.com 满分网,∠PAD=60°,点M,N分别是PA,PB的中点.
(I)求证:MN∥面ABCD;
(II)如果△CDN为直角三角形,求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.