满分5 > 高中数学试题 >

已知函数f(x)=alnx-ax-3(a∈R). (Ⅰ)求函数f(x)的单调区间...

已知函数f(x)=alnx-ax-3(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数manfen5.com 满分网在区间(t,3)上总不是单调函数,求m的取值范围;
(Ⅲ)求证:manfen5.com 满分网
利用导数求函数的单调区间的步骤是①求导函数f′(x);②解f′(x)>0(或<0);③得到函数的增区间(或减区间), 对于本题的(1)在求单调区间时要注意函数的定义域以及对参数a的讨论情况; (2)点(2,f(2))处的切线的倾斜角为45°,即切线斜率为1,即f'(2)=1,可求a值,代入得g(x)的解析式,由t∈[1,2],且g(x)在区间(t,3)上总不是单调函数可知:,于是可求m的范围. (3)是近年来高考考查的热点问题,即与函数结合证明不等式问题,常用的解题思路是利用前面的结论构造函数,利用函数的单调性,对于函数取单调区间上的正整数自变量n有某些结论成立,进而解答出这类不等式问题的解. 【解析】 (Ⅰ)(2分) 当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞); 当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1]; 当a=0时,f(x)不是单调函数(4分) (Ⅱ)得a=-2,f(x)=-2lnx+2x-3 ∴, ∴g'(x)=3x2+(m+4)x-2(6分) ∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=-2 ∴ 由题意知:对于任意的t∈[1,2],g′(t)<0恒成立, 所以有:,∴(10分) (Ⅲ)令a=-1此时f(x)=-lnx+x-3,所以f(1)=-2, 由(Ⅰ)知f(x)=-lnx+x-3在(1,+∞)上单调递增, ∴当x∈(1,+∞)时f(x)>f(1),即-lnx+x-1>0, ∴lnx<x-1对一切x∈(1,+∞)成立,(12分) ∵n≥2,n∈N*,则有0<lnn<n-1, ∴ ∴
复制答案
考点分析:
相关试题推荐
在四棱锥P-ABCD中,AD⊥AB,CD∥AB,PD⊥底面ABCD,manfen5.com 满分网,∠PAD=60°,点M,N分别是PA,PB的中点.
(I)求证:MN∥面ABCD;
(II)如果△CDN为直角三角形,求manfen5.com 满分网的值.
查看答案
已知数列{an}中,a1=2,a2=4,an+1=3an-2an-1(n≥2,n∈N*).
(Ⅰ)证明数列{an+1-an}是等比数列,并求出数列{an}的通项公式;
(Ⅱ)记manfen5.com 满分网,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值.
查看答案
设函数manfen5.com 满分网,若f(x)的最小正周期为8.
(Ⅰ)求ω的值;
(Ⅱ)若函数y=g(x)与y=f(x)的图象关于直线x=1对称,求当x∈[0,2]时y=g(x)的最小值.
查看答案
若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整数,且1≤i≤n),就称该数列为“对称数列”.
(1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项
(2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008
查看答案
已知函数manfen5.com 满分网,存在正数b,使得f(x)的定义域和值域相同.
(1)求非零实数a的值;
(2)若函数manfen5.com 满分网有零点,求b的最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.