把f(x)的解析式代入f(x1)+f(x2)中,进而根据x1x2≤,根据对数函数的性质,当a>1时判断出[f(x1)+f(x2)]≤f,当0<a<1(logax1+logax2)≥loga,综合可得答案.
【解析】
f(x1)+f(x2)=logax1+logax2=loga(x1x2)
∵x1,x2∈R+,
∴x1x2≤(当且仅当x1=x2时取“=”号).当a>1时,有loga(x1x2)≤loga
∴loga(x1x2)≤loga,(logax1+logax2)≤loga,
即[f(x1)+f(x2)]≤f(当且仅当x1=x2时取“=”号)当0<a<1时,有loga(x1x2)≥loga,
∴(logax1+logax2)≥loga,
即[f(x1)+f(x2)]≥f
(当且仅当x1=x2时取“=”号).