满分5 > 高中数学试题 >

设A(x1,y1),B(x2,y2)是椭圆,(a>b>0)上的两点,已知向量=(...

设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网,(a>b>0)上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),且manfen5.com 满分网,若椭圆的离心率manfen5.com 满分网,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(Ⅰ)根据题意可求得b,进而根据离心率求得a和c,则椭圆的方程可得. (Ⅱ)设出直线AB的方程,与椭圆方程联立消去y,表示出x1+x2和x1x2,利用建立方程求得k. (Ⅲ)先看当直线的斜率不存在时,可推断出x1=x2,y1=-y2,根据=0求得x1和y1的关系式,代入椭圆的方程求得|x1|和|y1|求得三角形的面积;再看当直线斜率存在时,设出直线AB的方程,与椭圆方程联立,利用韦达定理表示出x1+x2和x1x2,利用=0求得2b2-k2=4,最后利用弦长公式和三角形面积公式求得答案. 【解析】 (Ⅰ)2b=2.b=1,e= 椭圆的方程为 (Ⅱ)由题意,设AB的方程为y=kx+ 由已知=0得: = ,解得k=± (Ⅲ)(1)当直线AB斜率不存时,即x1=x2,y1=-y2, 由=0 又A(x1,y1)在椭圆上,所以 S= 所以三角形的面积为定值 (2)当直线AB斜率存在时,设AB的方程为y=kx+b 得到x1+x2= 代入整理得: 2b2-k2=4 = 所以三角形的面积为定值
复制答案
考点分析:
相关试题推荐
为了了解学生的体能情况,某校抽取了100名高二学生进行一分钟跳绳次数测试,将所得数据整理后,画出部分频数分布直方图,已知在图中,从左到右前四个小组的频率分别为0.05,0.15,0.4,0.2,根据已知条件填空或画图.第四小组频数为 ______;第五小组频率为 ______;在这次测试中,跳绳次数的中位数落在第 ______小组中;补全频数分布直方图.

manfen5.com 满分网 查看答案
已知函数f(x)在(-1,1)有意义,f(manfen5.com 满分网)=-1且任意的x、y∈(-1,1)都有f(x)+f(y)=f(manfen5.com 满分网),若数列{xn}满足x1=manfen5.com 满分网,xn+1=manfen5.com 满分网(n∈N*),求f(xn).
查看答案
已知二次函数f(x)=x2+2bx+c(b,c∈R)满足f(1)=0,且关于x的方程f(x)+x+b=0的两实数根分别在区间(-3,-2),(0,1)内.
(1)求实数b的取值范围;
(2)若函数F(x)=logbf(x)在区间(-1-c,1-c)上具有单调性,求实数c的取值范围.
查看答案
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)•f(b).
(1)求证:f(0)=1;
(2)求证:对任意的x∈R,恒有f(x)>0;
(3)求证:f(x)是R上的增函数;
(4)若f(x)•f(2x-x2)>1,求x的取值范围.
查看答案
已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(Ⅰ)求动圆圆心的轨迹M的方程;
(Ⅱ)设过点P,且斜率为-manfen5.com 满分网的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.