满分5 > 高中数学试题 >

定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的...

定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)•f(b).
(1)求证:f(0)=1;
(2)求证:对任意的x∈R,恒有f(x)>0;
(3)求证:f(x)是R上的增函数;
(4)若f(x)•f(2x-x2)>1,求x的取值范围.
(1)利用赋值法解决,令x=y=0即得; (2)利用条件:“当x>0时,f(x)>1”,只须证明当x≤0时,f(x)>0即可; (3)利用单调函数的定义证明,设x1<x2,将f(x2)写成f[(x2-x1)+x1]的形式后展开,结合(2)的结论即可证得; (4)由f(x)•f(2x-x2)>f(0)得f(3x-x2)>f(0).结合f(x)的单调性去掉符号“f”后,转化成一元二次不等式解决即可. (1)证明:令a=b=0,则f(0)=f2(0). 又f(0)≠0,∴f(0)=1. (2)证明:当x≤0时,-x>0, ∴f(0)=f(x)•f(-x)=1. ∴f(-x)=>0.又x>0时f(x)≥1>0, ∴x∈R时,恒有f(x)>0. (3)证明:设x1<x2,则x2-x1>0. ∴f(x2)=f(x2-x1+x1)=f(x2-x1)•f(x1). ∵x2-x1>0,∴f(x2-x1)>1. 又f(x1)>0,∴f(x2-x1)•f(x1)>f(x1). ∴f(x2)>f(x1).∴f(x)是R上的增函数. (4)【解析】 由f(x)•f(2x-x2)>1, f(0)=1得f(3x-x2)>f(0). 又f(x)是R上的增函数, ∴3x-x2>0, ∴0<x<3.
复制答案
考点分析:
相关试题推荐
已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(Ⅰ)求动圆圆心的轨迹M的方程;
(Ⅱ)设过点P,且斜率为-manfen5.com 满分网的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.

manfen5.com 满分网 查看答案
设F1、F2分别是椭圆manfen5.com 满分网的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求manfen5.com 满分网的最大值和最小值;
(Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.
查看答案
已知数列{an}中各项为:12、1122、111222、manfen5.com 满分网manfen5.com 满分网
(1)证明这个数列中的每一项都是两个相邻整数的积.
(2)求这个数列前n项之和Sn
查看答案
设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网,(a>b>0)上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),且manfen5.com 满分网,若椭圆的离心率manfen5.com 满分网,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案
已知定义在R上的函数f(x)同时满足:
(1)f(x1+x2)+f(x1-x2)=2f(x1)cos2x2+4asin2x2(x1,x2∈R,a为常数);
(2)f(0)=f(manfen5.com 满分网)=1;
(3)当x∈[0,manfen5.com 满分网]时,|f(x)|≤2
求:(Ⅰ)函数f(x)的解析式;(Ⅱ)常数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.