满分5 > 高中数学试题 >

已知函数f(x)=alnx-ax-3(a∈R). (Ⅰ)当a=1时,求函数f(x...

已知函数f(x)=alnx-ax-3(a∈R).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数manfen5.com 满分网在区间(t,3)上总存在极值?
(Ⅲ)当a=2时,设函数manfen5.com 满分网,若在区间[1,e]上至少存在一个x,使得h(x)>f(x)成立,试求实数p的取值范围.
(I)由题意及函数解析式需用导函数来求其单调区间; (II)由导函数的几何意义可以先求出a的值,此时函数f(x)就具体了,然后代入g(x)的解析式,再利用一元3次函数存在极值的充要条件建立m的不等式即可; (III)由题意构建新函数F(x),这样问题转化为使函数F(x)在[1,e]上至少有一解的判断. 【解析】 (Ι)当a=1时,函数f(x)=alnx-ax-3=lnx-x-3;导函数为; 当0<x<1时,函数f(x)单调递增,当时x>1时,函数f(x)单调递减; 故减区间为(1,+∞),增区间为(0,1); (Ⅱ)∵g(x)=x2-2x, ∴g‘(x)=3x2+(4+m)x-2, ∵g(x)在区间(t,3)上总存在极值,∴ 解得. 所以当m∈时,对于任意的t∈[1,2]函数在区间(t,3)上总存在极值. (Ⅲ)∴ ①当p≤0时,由x∈[1,e]得px-≤0,--2lnx<0. 所以,在[1,e]上不存在x,使得h(x)>f(x)成立; ②当p>0时,F'(x)=,∵x∈[1,e], ∴2e-2x≥0,px2+p>0,F'(x)>0在[1,e]上恒成立,故F(x)在[1,e]上单调递增. ∴. 故只要,解得.所以p的取值范围是.
复制答案
考点分析:
相关试题推荐
各项均为正数的数列{an}的前n项和为Snmanfen5.com 满分网
(1)求an
(2)令manfen5.com 满分网manfen5.com 满分网,求{cn}的前n项和Tn
(3)令manfen5.com 满分网(λ、q为常数,q>0且q≠1),cn=3+n+(b1+b2+…+bn),是否存在实数对(λ、q),使得数列{cn}成等比数列?若存在,求出实数对(λ、q)及数列{cn}的通项公式,若不存在,请说明理由.
查看答案
已知函数f(x)=ax2+4x+b(a<0,且a,b∈R).设关于x的不等式f(x)>0的解集为(x1,x2),且方程f(x)=x的两实根为α,β.
(1)若|α-β|=1,求a,b的关系式;
(2)若α<1<β<2,求证:(x1+1)(x2+1)<7.
查看答案
已知圆M:x2+(y-2)2=1,设点B,C是直线l:x-2y=0上的两点,它们的横坐标分别是t,t+4(t∈R),点P在线段BC上,过P点作圆M的切线PA,切点为A.
(1)若t=0,manfen5.com 满分网,求直线PA的方程;
(2)经过A,P,M三点的圆的圆心是D,求线段DO长的最小值L(t).
查看答案
manfen5.com 满分网如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案
已知向量manfen5.com 满分网=(1,cos⊙x),manfen5.com 满分网=(sin⊙x,manfen5.com 满分网)(⊙>o),函数f(x)=manfen5.com 满分网的图象上一个最高点的坐标为(manfen5.com 满分网,2),与之相邻的一个最低点的坐标(manfen5.com 满分网,-2).
(1)求f(x)的解析式.
(2)在△ABC中,a,b,c是角A,B,C所对的边,且满足a2+c2=b2-ac,求角B的大小以及f(A)取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.