满分5 > 高中数学试题 >

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m...

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0.
(I)求m与n的关系表达式;
(II)求f(x)的单调区间.
(I)由x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,求导,则f′(1)=0,求得m与n的关系表达式; (II)根据(I),代入f(x)中,求导,令导数f′(x)>0,求得单调增区间,令f′(x)<0,求得单调减区间. 【解析】 (I)f′(x)=3mx2-6(m+1)x+n, 因为x=1是f(x)的一个极值点, 所以f′(1)=0,即3m-6(m+1)+n=0,所以n=3m+6. (II)由(I)知, . 当m<0时,有,当x变化时,f(x)与f'(x)的变化如下表: x 1 (1,+∞) f′(x) <0 >0 <0 f(x) 单调递减 极小值 单调递增 极大值 单调递减 由上表知,当m<0时,f(x)在单调递减, 在单调递增,(1+∞)单调递减.
复制答案
考点分析:
相关试题推荐
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为manfen5.com 满分网.现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,
(I)求袋中原有白球的个数和;
(II)求取球两次停止的概率.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,θ∈(π,2π),且manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
已知m、n是不同的直线,α、β是不重合的平面,给出下列命题:
①若m∥α,则m平行于α内的无数条直线;
②若α∥β,m⊂α,n⊂β,则m∥n;
③若m⊥α,n⊥β,m∥n,则α∥β;
④若α∥β,m⊂α,则m∥β;
⑤若α⊥β,α∩β=m,n经过α内的一点,n⊥m,则n⊥β.
上面命题中,真命题的序号是     (写出所有真命题的序号). 查看答案
设x,y满足约束条件manfen5.com 满分网则使得目标函数z=6x+5y的值最大的点(x,y)是    查看答案
设双曲线manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0)的右焦点为F,右准线l与两条渐近线交于P、Q两点,如果△PQF是直角三角形,则双曲线的离心率e=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.