满分5 > 高中数学试题 >

已知椭圆和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,...

已知椭圆manfen5.com 满分网和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B.
(1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e;
(ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围;
(2)设直线AB与x轴、y轴分别交于点M,N,求证:manfen5.com 满分网为定值.

manfen5.com 满分网
(Ⅰ)(ⅰ)由圆O过椭圆的焦点,知圆O:x2+y2=b2,由此能求出椭圆的离心率e;       (ⅱ)由∠APB=90°及圆的性质,可得,|OP|2=2b2≤a2,由此能求出椭圆离心率e的取值范围; (Ⅱ)设P(x,y),A(x1,y1),B(x2,y2),则,所以PA方程为:x1x+y1y=b2,PB方程为:x2x+y2y=b2.由此入手能得到为定值. 【解析】 (Ⅰ)(ⅰ)∵圆O过椭圆的焦点,圆O:x2+y2=b2, ∴b=c,∴b2=a2-c2=c2,∴a2=2c2, ∴.(3分) (ⅱ)由∠APB=90°及圆的性质,可得, ∴|OP|2=2b2≤a2,∴a2≤2c2 ∴,.(6分) (Ⅱ)设P(x,y),A(x1,y1),B(x2,y2),则 整理得xx+yy=x12+y12∵x12+y12=b2 ∴PA方程为:x1x+y1y=b2,PB方程为:x2x+y2y=b2. ∴x1x+y1y=x2x+y2y,∴, 直线AB方程为,即xx+yy=b2. 令x=0,得,令y=0,得, ∴, ∴为定值,定值是.(12分)
复制答案
考点分析:
相关试题推荐
已知在四边形ABCD中,AD=DC=2,AB=4manfen5.com 满分网,BC=2manfen5.com 满分网,DC⊥AD,沿AC折叠,使D在底面ABC上的射影P在△ABC边AB的高线上.
(1)设E为AC中点,求证:PE∥平面BCD;
(2)求BD与平面ABC的所成角的正切值.
查看答案
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.
(1)记“函数f(x)=x2+ξ•x为R上的偶函数”为事件A,求事件A的概率;
(2)求ξ的分布列和数学期望.
查看答案
已知函数manfen5.com 满分网
(1)若函数y=f(x)的图象关于直线x=a(a>0)对称,求a的最小值;
(2)若存在manfen5.com 满分网,使mf(x)-2=0成立,求实数m的取值范围.
查看答案
已知函数manfen5.com 满分网
(1)g[f(1)]=   
(2)若方程g[f(x)]-a=0的实数根的个数有4个,则a的取值范围是    查看答案
已知函数f(x)=manfen5.com 满分网x-manfen5.com 满分网sinx-manfen5.com 满分网cosx的图象在点A(x,f(x))处的切线斜率为1,则tanx的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.