满分5 > 高中数学试题 >

已知正项数列{an}的前n和为Sn,且是与(an+1)2的等比中项. (1)求证...

已知正项数列{an}的前n和为Sn,且manfen5.com 满分网manfen5.com 满分网与(an+1)2的等比中项.
(1)求证:数列{an}是等差数列;
(2)若manfen5.com 满分网,数列{bn}的前n项和为Tn,求Tn
(1)要证明数列{an}为等差数列,需证明an-an-1=d,由已知条件可得 (2)用错位相减求和 【解析】 (1)由题意可知, 当n≥2, 整理可得(an-1)2=(an-1+1)2=(an-1+1)2 ∵an>0∴an-an-1=2 n=1,由 数列an以1为首项,以2为公差的等差数列 (2)由(1)可得an=1+2(n-1)=2n-1 ∴ ① ② ∴
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网(x>0且x≠1)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)已知manfen5.com 满分网对任意x∈(0,1)成立,求实数a的取值范围.
查看答案
为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列{an}的前四项,后6组的频数从左到右依次是等差数列{bn}的前六项.
(Ⅰ)求等比数列{an}的通项公式;
(Ⅱ)求等差数列{bn}的通项公式;
(Ⅲ)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率μ的大小.

manfen5.com 满分网 查看答案
如图:已知四棱柱ABCD-A1B1C1D1的底面是正方形,O1、O分别是上、下底面的中心,A1O⊥平面ABCD.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E在棱AA1上,且AE=2EA1,问在棱BC上是否存在点F,使得EF⊥BC?若存在,求出其位置;若不存在,说明理由.

manfen5.com 满分网 查看答案
设椭圆C:manfen5.com 满分网的离心率为e=manfen5.com 满分网,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)椭圆C上一动点P(x,,y)关于直线y=2x的对称点为manfen5.com 满分网,求3x1-4y1的取值范围.
查看答案
已知:A、B、C是△ABC的内角,a,b,c分别是其对边长,向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)求角A的大小;
(2)若manfen5.com 满分网,求b的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.