满分5 > 高中数学试题 >

若一系列函数的解析式和值域相同,但定义域不相同,则称这些函数为“同族函数”,例如...

若一系列函数的解析式和值域相同,但定义域不相同,则称这些函数为“同族函数”,例如函数y=x2,x∈[1,2]与函数y=x2,x∈[-2,-1]即为“同族函数”.下面四个函数中能够被用来构造“同族函数”的是( )
A.y=sin
B.y=
C.y=2x
D.y=log2
理解若一系列函数的解析式和值域相同,但定义域不相同,则称这些函数为“同族函数”的定义,根据例子判定四个选项的函数即可. 【解析】 y=sinx,x∈(0,π)与y=sinx,x∈(2π,3π),定义域不一样,值域都为y∈(0,1)解析式一样,故y=sinx能够被用来构造“同族函数”; y=x,y=2x,y=log2x是单调函数,故不能被用来构造“同族函数”. 故选A
复制答案
考点分析:
相关试题推荐
已知cosα=manfen5.com 满分网,且α是第四象限的角,则tan(2π-α)等于( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
设集合M={m∈z|-3<m<2},N={n∈z|-1≤n≤3},则M∩N=( )
A.{0,1}
B.{-1,0,1}
C.{0,1,2}
D.{-1,0,1,2}
查看答案
如图,双曲线C的渐近线是2x±3y=0,且两顶点间的距离为6,求该双曲线的方程.
查看答案
某汽车队今年(1999年)初用98万元购进一辆大客车,并投入营运,第一年需缴各种费用1 2万元,从第二年开始包括维修费内,每年所缴费用均比上一年增加4万元,该车投入营运后每年的票款收入为50万元,设营运n年该车的盈利额为y(万元).
(1)求出y表示为n的函数关系式;
(2)从哪一年开始,该汽车开始获利(即盈利为正值)?
(3)营运若干年后,对该汽车的处理方案有两种:①当年平均盈利达到最大值时,以30万元的价格处理该车;②当盈利额达到最大值时,以12万元的价格处理该车;问用哪种方案处理该车较为合算?为什么?
查看答案
已知函数y=f(x)的图象是自原点出发的一条折线,当n≤y≤n+1(n=0,1,2,…)时,该图象是斜率为bn的线段(其中正常数b≠1),设数列|xn|由f(xn)=n(n=1,2,…)定义.
(1)求x1、x2和xn的表达式;
(2)求f(x)的表达式,并写出其定义域;
(3)证明:y=f(x)的图象与y=x的图象没有横坐标大于1的交点.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.