已知函数

(1)a>1,解关于x的方程f(x)=3.
(2)记函数g(x)=f(-x),x∈[-2,+∞),若g(x)的最值与a无关,求a的取值范围.
考点分析:
相关试题推荐
一口袋中有四根长度分别为1cm,3cm,4cm和5cm的细木棒,小明手中有一根长度为3cm的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题:
(1)求这三根细木棒能构成三角形的概率;
(2)求这三根细木棒能构成直角三角形的概率;
(3)求这三根细木棒能构成等腰三角形的概率.
查看答案
如图,直线

交坐标轴于A、B两点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.
(1)求抛物线的解析式.
(2)若正方形以每秒

个单位长度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间的函数关系式,并写出自变量的取值范围.
查看答案

已知圆O:x
2+y
2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为

的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
查看答案
设向量

,

,若

求:(1)f(x)的单调递增区间
(2)若

,且f(θ)=1,求

的值.
查看答案
如图,ABCD为矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC=CF=2a,P为AB的中点.
(1)求证:平面PCF⊥平面PDE;
(2)求四面体PCEF的体积.
查看答案