满分5 > 高中数学试题 >

在△ABC中,A,B,C的对边分别为a,b,c,向量,. (Ⅰ)若向量∥求满足的...

在△ABC中,A,B,C的对边分别为a,b,c,向量manfen5.com 满分网manfen5.com 满分网
(Ⅰ)若向量manfen5.com 满分网manfen5.com 满分网求满足manfen5.com 满分网的角B的值;
(Ⅱ)若manfen5.com 满分网,试用角B表示角A与C;
(Ⅲ)若manfen5.com 满分网,且manfen5.com 满分网,求cosB的值.
(1)根据所给的向量的坐标和向量的平行关系,写出三条边的关系,代入角B的余弦定理,利用均值不等式表示出角B的余弦的取值范围,根据求角B的值. (Ⅱ)根据角A与角B的差是,还有两角之和是π-B,得到角A和角B的关系,即得到关于他们的二元一次方程,解方程组得到结果.本题只起到一个铺垫作用. (Ⅲ)根据两个向量的数量积的值,得到边之间的关系,a+c=2b,利用正弦定理把变化为角和第二问所得的结论,展开整理,得到关于角B的三角函数值. 【解析】 (Ⅰ)∵,,, ∴b2=ac, ∴, 当且仅当a=c时取等号, ∵0<B<π,∴. 由 得:, ∵, ∴. (Ⅱ)在△ABC中,∵ (Ⅲ)∵, ∴a+c=2b, ∴sinA+sinC=2sinB, 由及(Ⅱ)的结论得: ∴, 展开化简,得, ∵, ∴.
复制答案
考点分析:
相关试题推荐
设数列{an}满足a1+3a2+32a3+…+3n-1an=manfen5.com 满分网,n∈N*
(1)求数列{an}的通项;
(2)设manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
已知cos(x-manfen5.com 满分网)=manfen5.com 满分网,x∈(manfen5.com 满分网manfen5.com 满分网).
(1)求sinx的值;
(2)求sin(2xmanfen5.com 满分网)的值.
查看答案
已知a∈R,函数manfen5.com 满分网
(Ⅰ)如果函数g(x)=f′(x)是偶函数,求f(x)的极大值和极小值;
(Ⅱ)如果函数f(x)是(-∞,+∞)上的单调函数,求a的取值范围.
查看答案
已知函数f(x)=x2+manfen5.com 满分网(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.
查看答案
如图所示是某水产养殖场的养殖大网箱的平面图,四周的实线为网衣,为避免混养,用筛网(图中虚线)把大网箱隔成大小一样的小网箱.
(1)若大网箱的面积为108平方米,每个小网箱的长x,宽y设计为多少米时,才能使围成的网箱中筛网总长度最小;
(2)若大网箱的面积为160平方米,网衣的造价为112元/米,筛网的造价为96元/米,且大网箱的长与宽都不超过15米,则小网箱的长、宽为多少米量,可使总造价最低?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.