满分5 > 高中数学试题 >

已知m∈R,设p:不等式|m2-5m-3|≥3;q:函数f(x)=x3+mx2+...

已知m∈R,设p:不等式|m2-5m-3|≥3;q:函数f(x)=x3+mx2+(m+manfen5.com 满分网)x+6在(-∞,+∞)上有极值.求使p且q为真命题的m的取值范围.
对于P命题要利用含绝对值不等式进行等价转化,并准确利用一元二次不等式求出m的范围;对于q命题利用导函数的图象为二次函数,进而得到原来函数在实数集有极值的m的范围,再利用复合命题真假值表即可求解 【解析】 由已知不等式得 m2-5m-3≤-3① 或m2-5m-3≥3② 不等式①的解为0≤m≤5; 不等式②的解为m≤-1或m≥6. 所以,当m≤-1或0≤m≤5或m≥6时,p为真命题. 对函数f(x)=求导得, f′(x)=3x2+2mx+m+ 令f′(x)=0,即3x2+2mx+m+=0, 当且仅当△>0时,函数f(x)在(-∞,+∞)上有极值. 由△=4m2-12m-16>0得m<-1或m>4, 所以,当m<-1或m>4时,q为真命题. 综上所述,使p且q为真命题时,实数m的取值范围为 (-∞,-1)∪(4,5]∪[6,+∞).
复制答案
考点分析:
相关试题推荐
已知a>0,a≠1,设p:函数y=loga(x+1)在(0,+∞)上单调递减;q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p且q为假命题,p或q为真命题,求a的取值范围.
查看答案
分别写出下列命题的逆命题、否命题、逆否命题,并判断真假.
(1)当c<0时,若ac>bc,则a<b;
(2)若ab=0,则a=0或b=0.
查看答案
manfen5.com 满分网,则对任意实数a,b,“a+b≥0”是“f(a)+f(b)≥0”的    条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”之一) 查看答案
已知命题p:方程a2x2+ax-2=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0.若命题“p或q”是假命题,则a的取值范围是    查看答案
“a<0”是方程“ax2+2x+1=0至少有一个负数根”的     条件. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.