满分5 > 高中数学试题 >

在直角坐标系xOy中,点P到两点的距离之和为4,设点P的轨迹为C,直线y=kx+...

在直角坐标系xOy中,点P到两点manfen5.com 满分网的距离之和为4,设点P的轨迹为C,直线y=kx+1与C交于A,B两点.
(1)写出C的方程;
(2)若manfen5.com 满分网,求k的值;
(3)若点A在第一象限,证明:当k>0时,恒有manfen5.com 满分网
说明:本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力. 【解析】 (Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴, 故曲线C的方程为.(3分) (Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足 消去y并整理得(k2+4)x2+2kx-3=0, 故.(5分) 若,即x1x2+y1y2=0. 而y1y2=k2x1x2+k(x1+x2)+1, 于是, 化简得-4k2+1=0,所以.(8分) (Ⅲ)因为A(x1,y1)在椭圆上,所以满足y2=4(1-x2),y12=4(1-x12),=(x12-x22)+4(1-x12-1+x22)=-3(x1-x2)(x1+x2)=. 因为A在第一象限,故x1>0.由知x2<0,从而x1-x2>0.又k>0, 故, 即在题设条件下,恒有.(12分)
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,PB⊥AD,底面ABCD是边长为2的正方形,△PAB是等边三角形,求二面角B-AC-P的余弦.
manfen5.com 满分网
查看答案
已知数列{an}中,manfen5.com 满分网
(1)求证:数列{a2n-1}与{a2n}(n∈N*)均为等比数列;
(2)求数列{an}的前2n项和T2n
(3)若数列{an}的前2n项和为T2n,不等式3(1-ka2n)≥64T2n•a2n对n∈N×恒成立,求k的最大值.
查看答案
有红蓝两粒质地均匀的正方体形状骰子,红色骰子有两个面是8,四个面是2,蓝色骰子有三个面是7,三个面是1,甲拿红色骰子随机投掷两次所得点数和记为ξ1,乙拿蓝色骰子随机投掷两次所得点数和记为ξ2,规定所得点数和较大者获胜.
(1)分别写出ξ1和ξ2的分布列(不要求写过程),并求Eξ1及Eξ2
(2)问甲获胜的概率大还是乙获胜的概率大,并说明理由.
查看答案
己知向量manfen5.com 满分网,函数manfen5.com 满分网
(1)求f(x)的最小正周期和单调减区间;
(2)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,试求此时函数f(x)的值域.
查看答案
设直角三角形的两直角边的长分别为a,b,斜边长为c,斜边上的高为h,则有a+b<c+h成立,某同学通过类比得到如下四个结论:①a2+b2>c2+h2;②a3+b3<c3+h3;③a4+b4>c4+h4;④a5+b5<c5+h5
其中正确结论的序号是    ;进一步类比得到的一般结论是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.