已知数列的前n项和为
,且
.
(Ⅰ)求数列的通项公式;
(Ⅱ)令,数列
的前n项和为
,若不等式
对任意
恒成立,求实数
的取值范围.
如图,在直角梯形
中,
,
∥
,
,
,将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(Ⅰ)求证:平面
;
(Ⅱ)求几何体的体积.
某同学参加省学业水平测试,物理、化学、生物获得等级和获得等级不是
的机会相等,物理、化学、生物获得等级
的事件分别记为
、
、
,物理、化学、生物获得等级不是
的事件分别记为
、
、
.
(Ⅰ)试列举该同学这次水平测试中物理、化学、生物成绩是否为的所有可能结果(如三科成绩均为
记为
);
(Ⅱ)求该同学参加这次水平测试获得两个的概率;
(Ⅲ)试设计一个关于该同学参加这次水平测试物理、化学、生物成绩情况的事件,使该事件的概率大于,并说明理由.
已知向量,
,
,函数
的最大值为
.
(Ⅰ)求;
(Ⅱ)将函数的图像向左平移
个单位,再将所得图像上各点的横坐标缩短为原来的
倍,纵坐标不变,得到函数
的图像,求
在
上的值域.
在直角坐标系内,点实施变换
后,对应点为
,给出以下命题:
①圆上任意一点实施变换
后,对应点的轨迹仍是圆
;
②若直线上每一点实施变换
后,对应点的轨迹方程仍是
则
;
③椭圆上每一点实施变换
后,对应点的轨迹仍是离心率不变的椭圆;
④曲线:
上每一点实施变换
后,对应点的轨迹是曲线
,
是曲线
上的任意一点,
是曲线
上的任意一点,则
的最小值为
。
以上正确命题的序号是 (写出全部正确命题的序号).
已知向量的模长都为
,且
,若正数
满足
则
的最大值为
;