如图,在四棱锥P-ABCD中,PA⊥平面ABCD, AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.
(I)证明:MC//平面PAD;
(II)求直线MC与平面PAC所成角的余弦值.
已知数列中,
,
(Ⅰ)记,求证:数列
为等比数列;
(Ⅱ)求数列的前
项和
已知函数
(Ⅰ)求的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所对的边分别是,
,
,若
且
,
试判断△ABC的形状.
如图,在正方形中,已知
,
为
的中点,若
为正方形 内(含边界)任意一点,则
的取值范围是 .
在中,
,
, 则
的面积是_
_
已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=
,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于