理科已知函数,当
时,函数
取得极大值.
(Ⅰ)求实数的值;(Ⅱ)已知结论:若函数
在区间
内导数都存在,且
,则存在
,使得
.试用这个结论证明:若
,函数
,则对任意
,都有
;(Ⅲ)已知正数
满足
求证:当
,
时,对任意大于
,且互不相等的实数
,都有
文科设函数。(Ⅰ)若函数
在
处与直线
相切,①求实数
,b的值;②求函数
上的最大值;(Ⅱ)当
时,若不等式
对所有的
都成立,求实数m的取值范围。
已知平面内一动点到点
的距离与点
到
轴的距离的差等于1.(I)求动点
的轨迹
的方程;(II)过点
作两条斜率存在且互相垂直的直线
,设
与轨迹
相交于点
,
与轨迹
相交于点
,求
的最小值.
已知各项均不相等的等差数列的前三项和为18,
是一个与
无关的常数,若
恰为等比数列
的前三项,(1)求
的通项公式.(2)记数列
,
的前三
项和为
,求证:
(文科)长方体中,
,
,
是底面对角线的交点.
(Ⅰ) 求证:平面
;
(Ⅱ) 求证:平面
;
(Ⅲ) 求三棱锥的体积。
(理科)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.
(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3) 若P是棱A1C1上一点,求CP+PB1的最小值.