(14分)已知数列中,
,
(
)
(1)求数列的通项公式;
(2)设,数列
的前
项和为
,求证:
.
(14分)如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD,AB距离分别为m,
m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕
,
.线段MN必须过点P,端点M,N分别在边AD,AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
(1)求S关于x的函数关系式及该函数的定义域;
(2)当x取何值时,液晶广告屏幕MNEF的面积S最小?
(14分)如右图,简单组合体ABCDPE,其底面ABCD为边长为的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=
.
(1)若N为线段PB的中点,求证:EN//平面ABCD;
(2)求点到平面
的距离.
(12分)已知数列的前n项和为
,且
,(
=1,2,3…)
(1)求数列的通项公式;
(2)记,求
.
(12分)已知向量,
,且
.
(1)求的值;
(2 )求的值.
两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作,第2个五角形数记作
,第3个五角形数记作
,第4个五角形数记作
,…,若按此规律继续下去,得数列
,则
;对
,
.