(2006年福建卷)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度
(千米/小时)的函数解析式可以表示为:
已知甲、乙两地相距100千米。
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
(2006年广东卷)设函数分别在
、
处取得极小值、极大值.
平面上点A、B的坐标分别为
、
,该平面上动点P满足
,点Q是点P关于直线
的对称点
求:(Ⅰ)点A、B的坐标 ;
(Ⅱ)动点Q的轨迹方程
(2006年北京卷)已知函数在点
处取得极大值
,其导函数
的图象经过点
,
,如图所示.求:
(Ⅰ)的值;
(Ⅱ)的值.
(05北京卷)已知函数f(x)=-x3+3x2+9x+a,
(I)求f(x)的单调递减区间;
(II)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
(2006年江西卷)对于R上可导的任意函数f(x),若满足(x-1)³0,则必有(
)
A.f(0)+f(2)<2f(1) B. f(0)+f(2)£2f(1)
C.f(0)+f(2)³2f(1) D. f(0)+f(2)>2f(1)
(06年天津)函数的定义域为开区间
,导函数
在
内的图象如图所示,则函数
在开区间
内有极小值点( )
A.1个 B.2个 C.3个 D.4个