已知数列,
满足:
,当
时,
;对于任意的正整数
,
.设
的前
项和为
.
(1)计算,并求数列
的通项公式;
(2)求满足的
的集合.
已知抛物线,过动点
且斜率为1的直线
与抛物线交于不同两点A、B,|AB|
2.
(1)求的取值范围;
(2)若线段AB的垂直平分线交x轴于点N,求NAB面积的最大值.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合,且两个坐标系的单位长度相等.已知直线的参数方程为
,曲线C的极坐标方程为
.
(1)若直线的斜率为-1,求直线
与曲线C交点的极坐标;
(2)若直线与曲线C相交的弦长为
,求直线
的参数方程;
(3)若,直线
与曲线C相交于A、B,求
的值.
已知函数,把函数
的零点按从小到大的顺序排成一个数列
,则
=
.
已知是椭圆
的两个焦点,P为椭圆
上的一点,且
.若
的面积为9,则
.
过抛物线的焦点
的直线
交
于
、
两点(点
、
分别在第一、四象限),若
,则
的斜率为 .