已知递增等差数列满足:
,且
成等比数列.
(1)求数列的通项公式
;
(2)若不等式对任意
恒成立,试猜想出实数
的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为
,
由题意可知,即
,解得d,得到通项公式,第二问中,不等式等价于
,利用当
时,
;当
时,
;而
,所以猜想,
的最小值为
然后加以证明即可。
【解析】
(1)设数列公差为
,由题意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等价于,
当时,
;当
时,
;
而,所以猜想,
的最小值为
. …………8分
下证不等式对任意
恒成立.
方法一:数学归纳法.
当时,
,成立.
假设当时,不等式
成立,
当时,
,
…………10分
只要证 ,只要证
,
只要证 ,只要证
,
只要证 ,显然成立.所以,对任意
,不等式
恒成立.…14分
方法二:单调性证明.
要证
只要证 ,
设数列的通项公式
, …………10分
, …………12分
所以对,都有
,可知数列
为单调递减数列.
而,所以
恒成立,
故的最小值为
.
已知函数.
(1)求在区间
上的最大值;
(2)若函数在区间
上存在递减区间,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用,求解函数的最值。第一问中,利用导数求解函数的最值,首先求解导数,然后利用极值和端点值比较大小,得到结论。第二问中,我们利用函数在
上存在递减区间,即
在
上有解,即
,即可,可得到。
【解析】
(1),
令,解得
……………3分
,
在
上为增函数,在
上为减函数,
.
…………6分
(2)
在
上存在递减区间,
在
上有解,……9分
在
上有解,
,
所以,实数的取值范围为
已知,且
.
(1)求的值;
(2)求的值.
【解析】本试题主要考查了二项式定理的运用,以及系数求和的赋值思想的运用。第一问中,因为,所以
,可得
,第二问中,因为
,所以
,所以
,利用组合数性质可知。
【解析】
(1)因为,所以
, ……3分
化简可得,且
,解得
. …………6分
(2),所以
,
所以,
对于函数,若存在区间
,使得
,则称区间
为函数
的一个“稳定区间”.现有四个函数:
① ②
③
④
.
其中存在“稳定区间”的函数有 ▲
将四个女生和三个男生随机排成一排,然后从左至右依次给他们编号,则男生的编号之和小于女生编号之和的排法有 ▲
种.(请用数字作答)
下图都是由边长为1的正方体叠成的图形
例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位,第(4)个图形的表面积是60个平方单位.依此规律,则第(8)个图形的表面积是 ▲ 个平方单位.