设集合M={直线},N={圆},则集合M
N中元素个数为( )个
A.0 B.1 C.2 D.0或1或2
(1)证明不等式:![]()
(2)已知函数
在
上单调递增,求实数
的取值范围。
(3)若关于x的不等式
在
上恒成立,求实数
的最大值。
设平面内两定点
,直线PF1 和PF2相交于点P,且它们的斜率之积为定值
;
(Ⅰ)求动点P的轨迹C1的方程;
(Ⅱ)设M(0,
),N为抛物线C2:
上的一动点,过点N作抛物线C2的切线交曲线C1于P、Q两点,求
面积的最大值.
各项为正数的数列
的前n项和为
,且满足:![]()
(1)求
;
(2)设函数
求数列![]()
已知直三棱柱
的三视图如图所示,且
是
的中点.
(Ⅰ)求证:
∥平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)试问线段
上是否存在点
,使
与
成
角?若存在,确定
点位置,若不存在,说明理由.

中国
黄石第三届国际矿冶文化旅游节将于2012年8月20日在黄石铁山举行,为了搞好接待工作,组委会准备在湖北理工学院和湖北师范学院分别招募8名和12名志愿者,将这20名志愿者的身高编成如下茎叶图(单位:cm)
若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有湖北师范学院的“高个子”才能担任“兼职导游”。
(1)根据志愿者的身高编茎叶图指出湖北师范学院志愿者身高的中位数;
(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(3)若从所有“高个子”中选3名志愿者,用
表示所选志愿者中能担任“兼职导游”的人数,试写出
的分布列,并求
的数学期望。

