若椭圆
上一点到左焦点的距离为1,则该点到右焦点的距离为(  )
A. 1 B. 2 C. 3 D. 4
命题“![]()
,
≥
”的否定是(  )
A.![]()
,
          
B.![]()
,![]()
C.![]()
,
          
D.![]()
,![]()
已知
,且
则一定成立的是(  )
A、
     B、
    C、
     D、![]()
已知
,
 ⑴若
,求方程
的解;
 ⑵若关于
的方程
在
上有两个解
,求
的取值范围,并证明:![]()
汕头市南澳岛有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金
(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用
(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。
(1)求函数
的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
已知点A、B、C、D的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),![]()
α∈(
,
).
(1)若|
|=|
|,求角α的值;
(2)若
·
=-1,求
的值.
(3)若
在定义域α∈(
,
)有最小值
,求
的值。
